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Abstract—Currently most performance evaluation of Brain-
Computer Interface (BCI) systems is simply reported in terms
of accuracy. In this paper we propose a novel approach to
evaluate the true performance of BCI systems based on Receiver
Operating Characteristic (ROC) analysis, that removes the lim-
itations of the accuracy performance measure. We demonstrate
the need to provide, and particularly for small sample size,
Confidence Interval (CI) bounds to indicate reliability of the
BCI system performance. The ROC-based methodology makes
it possible to calculate CI, shown as a contour at each any
points of the ROC curve, with value of the lower bound of the
Area Under the Curve (AUC). We illustrate the usefulness of
the methodology using the results the BCI Competition IV data
set 3, dealing with the classification of wrist movements from
four directions recorded using magnetoencephalogram (MEG).
Plotting the 95% CI contours overlayed on the ROC curves
revealed some overlap with the chance level, thus revealing
potential different interpretation from claims based on single
accuracy value. The ROC-based methodology will also help to
determine minimal sample size, an important requirement for
future BCI studies and competitions.

I. INTRODUCTION

Over the last two decades Brain-Computer Interface (BCI)
systems have gained a great deal of popularity, with a sign is
its growing number of publications and regular organization
of world competitions during which researchers are proposing
innovative solutions to the BCI challenge. Despite a tool-set
of methods available for evaluating the performance of BCI
systems [1], a simple figure of accuracy is typically used. No
robust performance evaluation methodology has yet been put
forward.

This comes mainly from the fact that the number of trials
recorded differs from studies to studies, some results are
provided with accuracy while others provide a more elaborated
performance evaluation e.g. 10x10 fold cross-validation. This
issue is even more appropriate when looking at the recent
interest in BCI which include zero-training aspects [2], as
researchers are trying to minimize the generality of their
algorithms.

Rigorous evaluation should be of primary concern if the
BCI research community seeks to fully exploit the potential
of BCI systems. Concerns should be taken to avoid cases
such as the one recently published in [3], in which authors
discussed the potentially misleading technological aspects of a
commercialized BCI headset. Another recent article published
promising results on a Near Infrared Spectroscopy (NIRS)
based system claiming high 80% accuracy, but with a weak

methodology as found out by Dominguez [4]. This was
followed by a reply [5] from the original authors admitting
much lower accuracy results (average 53%, 3 out of 9 with
only 63% accuracy). Such cases should serve as warnings for
the BCI research community to seek more rigorous and robust
methodologies for performance evaluation.

From the literature, it has been shown that AUC should
be preferred over accuracy [6]. Other research domains, in
particular related to medicine such as radiology, consider that
reporting only accuracy is not enough and have imposed AUC
as the de-facto measure of performance in particular with small
sample size [7].

In this paper we contribute by proposing a methodology
based on Receiver Operating characteristic (ROC) [8] analysis
that makes use of Probability Density Function (PDF) to calcu-
late the confidence interval (CI) shown as contours overlayed
at any ROC point, and using a fast version [9] both lower
and upper CI bounds of the Area Under the Curve (AUC).
The methodology based ROC analysis was first developed for
objective evaluation of intelligent medical systems [10]. From
its constituent parts, a BCI system makes use of signal process-
ing, for the Electroencephalogram (EEG) pre-processing and
feature extraction and machine learning stage, with a typical
classification based on Linear Discriminant Analysis (LDA),
and can thus be considered as an intelligent medical system.

One particular limitation of current BCI research is that
most studies report small sample size not only in terms of
number of trials used to train and test BCI systems, but also in
terms of subjects recruited/enrolled in BCI studies. This should
motivate to use more robust, statistically sound methodologies,
such as ROC analysis to evaluate BCI systems.

Finally, unlike other medical systems for which the cost
of diagnosis is important (e.g. cancer or brain disease),
BCI systems currently aim at relatively simple control of
a wheelchair [11] and communication applications such as
P300-based speller, thus even if the safety aspect in BCI is still
relatively minimal, it remains paramount for future clinical and
home usage. In this respect, ROC analysis also serves better
the performance evaluation of BCI systems.

The remainder of this paper is organized as follows. In
Section II we propose a methodology based on ROC analysis.
We illustrative its use with BCI example in Section III. Finally,
in Section IV, we conclude the paper.
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II. ROC-BASED METHODOLOGY

A typical classifier, used in BCI systems, aims to separate
two or more classes using a set of features extracted from the
data. For non-invasive BCI systems, such data are typically
MEG, EEG or NIRS time segments, called trials, associated
to a specific tasks such as real hand movements [12], finger
tapping, motor imagery, etc. A 2-class classifier can have
four outcomes: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) making a contingency
table (or confusion matrix) as shown in Table I.

From a {TP,TN,FN,FN} set one can calculate performance
measures such as sensitivity (SEN = 𝑇𝑃

𝑇𝑃+𝐹𝑁 ), specificity
(SPE = 𝑇𝑁

𝑇𝑁+𝐹𝑃 ) and accuracy (ACC = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 ).

Using a threshold that varies across the full range of the
classifier’s output, one can obtain a multitude of contingency
tables and plot of the Sensitivity versus 1-Specificity which is
known as a Receiver Operating Characteristic (ROC) curve [8].

One of the main limitations of accuracy can be demonstrated
from the following. If we take one of the BCI Competition
IV result, the winning solution for example, the accuracy
for Subject1 is 59.5%. Such figure corresponds to a ratio
of 44/74. If another BCI system is developed and based on
a larger number of trials, say 370, the a 88/370 will have
the same accuracy. However, from a machine learning point
of view, the later system seems ’better’ than the first one,
because its accuracy is calculated over a larger number of
trials, thus improving the effect of generalization. Such simple
example shows that to provide only an accuracy measure for
performance is not enough and that only CI allows to define
some reliability of the measure. This should be even more
important when dealing with small size data sets as it is often
the case in BCI.

We thus propose to use a ROC-based methodology that
will remove these current limitations. Initially developed to
evaluate intelligent medical systems [10][13], it is adapted to
BCI systems. Due to the small sample size, either in terms of
number of trials or subjects in BCI studies, this methodology
is best suitable for the task of evaluating the performance BCI
systems. It was also shown to be able to estimate sample size
requirements [14].

III. ILLUSTRATIVE EXAMPLE

To illustrate our approach we use the results from the BCI
Competition IV data sets 31 on hand movement [12]. The

1http://www.bbci.de/competition/iv/#dataset3
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Fig. 1. BCI Competition IV data sets 3: true labels

true labels were provided post-competition for both Subject1
and Subject2. As shown in Figure 1, one should notice that
Subject2 has one less test trial than Subject1, and both have
unbalanced class label count (four directions with 14-30-15-15
for Subject1, and 19-18-12-24 for Subject2).

The four winner solutions, from Team1 to Team4, are as
follows. First place was given to S. Hajipour and M. B. Sham-
sollahi (Sharif University of Technology, Tehran, Iran) with
an average accuracy of 46.9% (Subject1: 59.5%, Subject2:
34.3%). Second place was attributed to J. Li with W. Hong,
J. Song, Y. Xu, X. Li (Yanshan University, Qinhuangdao,
China), with an average accuracy of 25.1% (Subject1: 31.1%
and Subject2: 19.2%) Third place was for N. Montazeri and
M. B. Shamsollahi (Sharif University of Technology, Tehran,
Iran) with an average accuracy of 23.9% (Subject1: 16.2% and
Subject2: 31.5%), while fourth place to J. Wang and T. Zhang
(Yanshan University, Qinhuangdao, China) with an average
accuracy 20.4% (Subject1: 23.0% and Subject2: 17.8%).

For a 4-class classification paradigm, the level of chance is
at the accuracy of 25%, thus all results from the Team4 are
not better than chance. To be complete, a 4-class classification
paradigm chance level is not exactly 25%, one should also
consider the CI with a level 𝛼 which depends on the number
of trials. For example, the upper level is calculated as 29.7%
for 80 trials and 𝛼 = 5% i.e. 95% CI (See [15] for details).

Using known accuracy results and number of trials from the
true labels (i.e. 𝑁𝑇𝑟𝑖𝑎𝑙𝑠 = TN+TP+FN+FP), we enumerate all
possible cases of TN+TP using the accuracy ratio. We can thus
plot ROC curve corresponding to this specified accuracy (by
enumerating TN and TP, we find specificity and sensitivity,
accordingly). We show such ROC curves for each team in
Figure 2, with the chance level (line of chance) at 50% for
2-class paradigm and 25% for 4-class paradigm.

As shown in Figure 2(a), of all submissions, only the win-
ning team achieved both accuracy for Subject1 and Subject2
to be higher than chance level. Team2 and Team3 managed
to get better than chance for Subject1 (31.1%) and Subject2
(31.5%), respectively, as shown in Figure 2(b) and Figure 2(c).
However these results are rather close to the 29.7% for the
chance level (upper 95% CI).
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To illustrate the use of the ROC methodology, we plot few
contours for specific ROC points in Figure 2(a), Figure 2(b)
and Figure 2(c). For Subject1, 𝑁𝑇𝑟𝑖𝑎𝑙𝑠 is 74 and for Subject2
𝑁𝑇𝑟𝑖𝑎𝑙𝑠 is 73, while for the mean ROC curve, we concatenate
trials from both subjects’ and thus used 𝑁𝑇𝑟𝑖𝑎𝑙𝑠 to be 148 (i.e.
74+73).

It is rather obvious from the figures that, because of the
small sample size, the 95% CI contours are rather large. As
shown in Figure 2(a), for Team1 both contours for Mean
(AUC-L=0.371) and Subject1 (AUC-L=0.455) AUC-L 95%CI
are well above the chance level (AUC=0.25), however not for
Subject2 (AUC-L=0.220), where there is clear overlap. For the
all 3 other teams, CI contours all overlap the level of chance,
providing little confidence about the performance due to small
sample size. One should also notice that because of the
larger number of trials 𝑁𝑇𝑟𝑖𝑎𝑙𝑠 (i.e. 74+73, as we concatenate
Subject1 and Subject2 results), the 95% CI contour for the
mean is smaller than the one of Subject1 or Subject2, as
expected in Figure 2(a) and Figure 2(d).

In [14], the ROC-based methodology was found useful for
sample size determination (SSD), i.e. finding the minimum
number of trials, from a ROC analysis stand-point, that will
allow adequate statistical validity for performance. Results,
useful for future BCI studies and BCI competitions, will be
presented elsewhere.

IV. CONCLUSIONS

In this paper we looked at performance evaluation for BCI
systems, one important issue and in particular with small
sample size. We provide a critical analysis of the current
limitations of accuracy and proposed an approach, based on
ROC analysis with CIs, provide confidence (e.g. at 95% or
99%) in BCI systems accuracy results typically reported in
the BCI literature.

Illustrative example on the BCI Competition IV data sets
3, provided a real of lack of confidence about the current per-
formance presented as accuracy. We argue that more adequate
measures, such as ROC curve, AUC, which should be, as they
are based on robust statistical foundations, be important part
of the BCI research tool-set.

This study helped to rise two important conclusions. First, to
improve the current state-of-the-art, BCI systems performance
evaluation should be reported with figures of merit such as
the {sensitivity, specificity, accuracy} triplet, p-value from
statistical significance test, and as proposed here a ROC
analysis from which a ROC curve with 95% CI contours can be
visualized, calculate the AUC with CI (lower and upper bounds
as derived in [14][9]) and Standard Error (SE) [16]. All-
together they form a comprehensive and robust performance
evaluation for BCI systems.

Finally, as a young research field, we believe that there is a
need to provide adequate and unified guidelines to report BCI
results, to avoid methodological mistakes [4] and associated
negative publicity. This will only be achieved by mean of
reproducible results supported by robust evaluation, e.g. based
on ROC analysis. We believe that the BCI research community

should also seek to elaborate guidelines for reporting BCI
studies, as in other domains e.g. in neuroimaging [17], or in
the form of simple rules [18]. Finally, we should also seek
to use large data set for performance evaluation such as the
recent initiative by the Team PhyPA (Physiological Parameters
for Adaptation)[19].
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Fig. 2. ROC curve with 95% CI for each results of BCI Competition IV data sets 3
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