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Abstract 

 

Discrete-time audio equalisers introduce a variety of undesirable artefacts into audio mixing 

systems, namely, distortions caused by finite wordlength constraints, frequency response distortion 

due to coefficient calculation and signal disturbances that arise from real-time coefficient update.  An 

understanding of these artefacts is important in the design of computationally affordable, good 

quality equalisers.  A detailed investigation into these artefacts using various forms of arithmetic, 

filter frequency response, input excitation and sampling frequencies is described in this thesis. 

Novel coefficient calculation techniques, based on the matched z-transform (MZT) were 

developed to minimise filter response distortion and computation for on-line implementation.  It was 

found that MZT-based filter responses can approximate more closely to s-plane filters, than BZT-

based filters, with an affordable increase in computation load.  Frequency response distortions and 

prewarping/correction schemes at higher sampling frequencies (96 and 192 kHz) were also assessed. 

An environment for emulating fractional quantisation in fixed and floating point arithmetic 

was developed.  Various key filter topologies were emulated in fixed and floating point arithmetic 

using various input stimuli and frequency responses.  The work provides detailed objective 

information and an understanding of the behaviour of key topologies in fixed and floating point 

arithmetic and the effects of input excitation and sampling frequency. 

Signal disturbance behaviour in key filter topologies during coefficient update was 

investigated through the implementation of various coefficient update scenarios.  Input stimuli and 

specific frequency response changes that produce worst-case disturbances were identified, providing 

an analytical understanding of disturbance behaviour in various topologies.  Existing parameter and 

coefficient interpolation algorithms were implemented and assessed under finite wordlength 

arithmetic.  The disturbance behaviour of various topologies at higher sampling frequencies was 

examined. 

The work contributes to the understanding of artefacts in audio equaliser implementation.  

The study of artefacts at the sampling frequencies of 48, 96 and 192 kHz has implications in the 

assessment of equaliser performance at higher sampling frequencies. 
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1 Introduction 
 
 
 
 
 
 
 
 
 
 
 

1.1 Frequency response equalisation in audio mixing 
systems 

 
Frequency response equalisation is an important aspect of all audio mixing applications 

such as public address, recording, broadcast and live performance.  Frequency response 

equalisation is typically performed on every audio channel in mixing systems.  A typical 

audio channel equaliser, termed ‘parametric equaliser’, consists of three to six cascaded 

stages of filtering.  Typically, each filter stage is used to provide control of a particular 

spectral region of the audio signal.  Various filter types are selectable for each stage, for 

example, low pass, high pass, peak (bell) and shelving filter functions.  A user interface 

enables real time control of the parameters of the filters (for example centre frequency, Q 

factor and Gain).  By manipulating the filter parameters the user can modify the frequency 

response of an audio channel to provide desirable subjective or objective spectral changes 

to the audio signal.  Subjective changes are made to ‘enhance’ or to create an ‘effect’ in a 

particular spectral region of the audio signal.  Objective modifications to the frequency 

response are typically used to control a particular spectral band in the audio signal due to 

noise interference or for transmission purposes. 

The commercial success of the storage of audio information on digital media (compact 

disc, digital audio tape and hard disc recording) has led to increased use of digital audio in 

mixing applications.  Furthermore, digital audio mixing systems are becoming popular, 
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due to digital audio interfacing (Audio Engineering Society, 1992) and the benefits of 

computer control which allows, for example, snap-shot audio scene change at the touch of 

a button.  However, the high cost of digital mixer technology has in the past led to inferior 

performance, compared to analogue mixers.  Factors that contributed to this include: poor 

ergonomics due to design constraints of the digital control surface; noise and distortion 

components due to inadequate audio signal wordlengths in the analogue to digital 

conversion and signal processing; audio bandwidth limitations due to the adopted 

sampling frequencies of 44.1 and 48 kHz. 

 

1.2 Advances in digital audio equalisation 
 
Digital signal processing techniques have been exploited to implement novel equalisation 

schemes that were not feasible in analogue systems.  Linear phase, finite impulse response 

(FIR) filters have been used for equalisation applications (Kraght, 1992; Lian and Lim 

1993).  Novel speaker equalisation systems using high order frequency response 

equalisation curves to correct speaker frequency responses have been developed 

(Greenfield, 1991; Hawksford, 1997).  Digital adaptive filtering techniques have been 

used in echo cancellation and acoustic feedback attenuation to improve intelligibility in 

public address applications (Kamerling et al, 1998).  Despite these advances in digital 

audio equalisation, there is still a requirement to replicate analogue parametric equalisers 

with minimum phase characteristics. 

Recent advances in digital signal processor (DSP) technology have made floating point 

devices available to the audio industry. Various floating point formats have been 

implemented.  For example, a twos-complement binary coded format (Texas Instruments, 

1992) and a sign magnitude binary coded format (Analog Devices, 1997) are available.  In 

addition, fixed point processors that enable efficient double precision arithmetic 

(Motorola, 1999) are emerging.  However there is still no simple way of specifying 
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internal signal processing resolution in commercial digital audio systems.  Audio systems 

utilise a variety of wordlengths, e.g 24, 32, 40, 48 and 56 bits, and employ single, 

extended and double precision fixed or floating point arithmetic.  Specifications of 

commercial systems often detail internal operating wordlengths at different parts of the 

arithmetic unit.  In addition, numerous implementation techniques are used to realise 

operational digital filters.  These filters make it difficult to compare arithmetic 

specifications of digital equaliser systems. 

The higher sampling frequencies of 96 kHz and 192 kHz were standardised in the Audio 

Engineering Society (1999).  The introduction of the higher sampling frequencies has 

caused debate about human auditory perception beyond 20 kHz.  Due to the design 

constraints of digital audio equipment, it is difficult to quantify whether the extended 

audio bandwidth (beyond 20 kHz), facilitated by the higher sampling rates, is the sole 

reason for improved audio reproduction.  Some digital equalisers operating at a sampling 

rate of 96 kHz have been reported to sound inferior to analogue equalisers and digital 

equalisers operating at a sampling rate of 48 kHz.  Problems associated with digital 

equaliser quality are not always associated with the constraints of the Nyquist frequency 

limitation.  Common criticisms of digital equalisation include noise and harmonic 

distortion products, transient distortion during parameter change, and high frequency 

response. 

A primary aim of this project is to investigate the distortions associated with the efficient 

implementation of discrete-time equalisers, paying particular attention to system sampling 

rates, finite wordlength arithmetic and the coefficient calculation process. 

 

1.3 Research issues in digital equaliser design 
 
Figure 1-1 depicts the key parts of a digital equaliser system.  In practice the mixing 

system operator specifies a desired frequency response by manipulating the user interface 
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(control surface).  This produces a set of filter parameters which are used to calculate 

appropriate digital filter coefficients.  The discrete-time varying filter implementation 

applies the specified frequency response to the audio signal. 
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Figure 1-1 A digital equaliser system 

 

1.3.1 Coefficient calculation techniques 
 
On-line digital equaliser coefficient calculation provides greater parameter resolution and 

filter type selection than off-line coefficient generation schemes (look-up tables).  

However, this increases computational load and can produce inferior filter responses 

compared to off-line coefficient calculation.  With the increasing power of DSP 

technology, it is feasible and beneficial to implement both on-line coefficient calculation 

and the filtering functions required for equalisation on the same processor.  In this case, it 

is necessary to optimise the computational load for coefficient calculation and minimise 

the distortion in the frequency response.  Frequency response distortion is taken here to 

mean the difference between the magnitude and phase responses of the target filter (the 
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ideal s-plane response) and that of the resulting discrete-time filter.  Techniques for on-

line calculation of equaliser coefficients have been described extensively.  In techniques 

based on the Matched z-transform (MZT) (McNally, 1979; Hirata, 1980), distortions due 

to reflections about the sampling frequency were not considered.  In Bilinear z-transform 

(BZT) based techniques, a number of pre-warping schemes have been developed to reduce 

the response distortion that is inherent in the BZT (Moorer, 1983; White, 1985; Shpak, 

1992; Bristow-Johnson, 1994; Orfanidis, 1996).  However, the response distortions 

produced by the different BZT based techniques have not been compared. 

 

1.3.2 Finite wordlength noise analysis of filters 
 
The three main finite wordlength effects associated with digital filter implementation are 

coefficient quantisation, arithmetic overflow and arithmetic quantisation. 

Coefficient quantisation is necessary because of the finite wordlength of the coefficient 

storage elements.  Coefficient quantisation affects the pole and zero positions on the z-

plane, leading to a distortion of the frequency response of the filter.  This distortion is 

filter topology dependent, since topology sensitivity to coefficient quantisation varies.  

Direct form topologies are highly sensitive to coefficient quantisation compared to 

coupled forms, state variable, ladder and lattice structures.  Typically in direct form 

topologies filters tuned to low frequencies with respect to the sampling frequency produce 

large response distortions, examples are given in Wise (1998). 

Arithmetic quantisation and overflow both result from finite wordlength arithmetic 

operations.  The multiplication and accumulation of state variables can lead to an increase 

in wordlength.  If an arithmetic result is stored in memory at a wordlength less than the 

result, then quantisation or overflow can occur.  Quantisation errors in filter topologies act 

as noise sources and the overall noise characteristics of a topology greatly depends on 

where quantisation takes place in the topology.  Arithmetic overflow in fixed point 
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implementations leads to large limit cycle signal behaviour (periodic, highly correlated, 

often self-sustained oscillations).  Scaling is typically employed to avoid overflow, but 

this compromises the signal to noise ratio of the filter. 

The Direct form 1 topology (DF1) with error feedback may be used to combat 

quantisation noise in high quality audio applications using 24 bit fixed point arithmetic 

(Dattorro, 1988).  The DF1 is shown to be immune from accumulator overflow using 

modulo wrap-round techniques and capable of producing low frequency tuned filters using 

double precision coefficients to minimise the direct form high coefficient sensitivity.  

Dattorro, 1988 suggests that DF1 is the most suitable topology for fixed point professional 

audio applications.  In Wilson (1993), fixed point noise models for DF1 (using error 

feedback) and the Gold-Rader coupled form are developed.  The DF1 is shown to be 

computationally more efficient and produce less quantisation noise than the scaled Gold-

Rader structure (using scaling to avoid overflow).  Zölzer (1991) develops fixed point 

quantisation noise models for the DF1 (with and without error feedback), and unscaled 

coupled form topologies (Gold-Rader, Kingsbury and Zölzer).  The Zölzer topology was 

found to produce superior dynamic range figures for low frequency filters. 

Ladder and lattice allpass filters can be used to realise audio equaliser filters (Regalia, 

1988 ; Massie, 1993).  The ladder uses L2 norm scaling at each accumulator node to 

combat overflow, Massie (1993).  However L2 norm scaling does not eliminate the 

possibility of overflow, since the scaling is based on average power not peak amplitude.  

Cabot (1992) details a hybrid digital filter structure using the zero part of the direct form 

topology and implements the pole transfer function through the use of the state-space 

topology or ‘normal form’ as described in Mullis and Roberts (1976).  This topology is 

reported to produce quantisation noise and stability characteristics similar to the state-

space topology, but produces a more efficient coefficient calculation method than that of 

the state-space topology. 
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Theoretical noise models for cascaded and parallel DF1 structures, implemented in 

floating point arithmetic are developed in Liu and Kaneko (1969).  This model has been 

used in comparison to a DF1 fixed point noise model (Weinstein and Oppenheim, 1969).  

It concludes that ‘floating point arithmetic leads to a lower noise to signal ratio than fixed 

point if the mantissa is equal in length to the fixed point word’.  Despite the development 

of fixed and floating point noise models, no work has studied and compared the noise and 

distortions of actual filter implementations in fixed and floating point arithmetic or 

assessed the influences of sampling frequency. 

 

1.3.3 Filter coefficient update and resulting disturbances 
 
Discrete time-varying filters are commonly used to allow user control over filter types and 

parameters in digital equalisers.  However, time-varying digital filters are susceptible to 

audible transient distortion (disturbances), which can be problematic in audio systems.  

Disturbances due to a filter state change during the configuration of an audio system 

installation can damage speakers and distress the human ear.  The production of noticeable 

disturbance as a result of filter state change could hinder a live performance. 

Much work has been done in the investigation and optimisation of filter systems to 

accommodate state change with minimal audible disturbance.  Mourjopoulos et al (1990) 

investigated optimal filter parameter interpolation rates with the goal of minimising 

audible disturbances.  Bell and shelving filter functions were implemented using an allpass 

topology embedded in a gain structure.  Frequency parameter changes under sinusoidal 

input were found to produce worst case disturbances.  Hanna (1994) examined optimal 

parameter update rates for a bell filter, using the DF1 topology.  Music and sinusoids were 

used as audio test programme.  Parameter update intervals of 1ms were found to produce 

inaudible disturbances in virtually all cases. 
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Zölzer et al (1993) examined optimal switching strategies for parameter interpolation for 

shelving, bell, low and high pass filters.  Strategies for parameter morphing between two 

filter types relies on an intermediate unity gain (flat) frequency response then changing 

filter type and morphing onto the target response.  The work reported minimal acoustic 

disturbance for parameter update intervals in the region of 1 to 40 ms.  The work also 

describes a technique using an attenuator to reduce signal level during filter state change.  

This produces audible amplitude modulation during the filter state change. 

Rosenthal (1997) describes a technique to reduce disturbance using two filters 

implemented in parallel.  One filter produces the current frequency response whilst the 

other filter implements the new target response.  Once the target filter has settled, its 

output level is ramped up and the other filter’s output level is ramped down.  This incurs 

the implementation costs of two filters and produces unsuitable amplitude modulation for 

slow settling filters (low frequency, high Q filters).  In Välimäki (1995) a transient 

eliminator system is described.  This system implements a secondary pole transfer 

function in parallel with the primary filter.  The secondary ‘pole only’ filter is fed the 

coefficients at an earlier point in time than the primary filter.  Once the ‘pole only’ filter 

has settled its state variables are transferred to the pole section of the primary filter, 

minimising the coefficient update disturbance.  This technique is computational 

exhaustive and therefore not suitable for efficient implementation. 

In Ding and Rossum (1995) coefficient interpolation techniques are developed which 

closely simulate the logarithmic nature of frequency and gain filter parameters.  This 

technique dispenses with the need for a complex parameter to coefficient mapping.  

However, the technique only applies to particular filter types and is bound to one filter 

topology.  Furthermore, the interpolated/extrapolated states do not produce identical 

responses to a known ideal filter function.  Therefore, the use of a target coefficient set 
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may be needed to realise exact filter settings.  The technique is desirable in the application 

of musical synthesis. 

In Moorer (1999) audio disturbances for DF1, the allpass ladder structure and a state-

variable topology are measured using white noise input excitation.  The filter response 

change, used in the measurements, was a linear sweep of the centre frequency of a bell 

filter (from 44.1 Hz to 441 Hz, constant peak gain, 18 dB, and constant bandwidth 22.05 

Hz).  The DF1 was shown to produce disturbance magnitudes of over 10.  The allpass 

ladder and state-variable structures produced disturbance magnitudes of over 1.5. 

Most of the previous work used parameter interpolation.  Techniques exist that reduce 

disturbances by direct interpolation of coefficient sets, from an initial stable set of 

coefficients to a target set over a pre-determined period.  Despite this work in the 

optimisation of coefficient update in filters there is no work describing the actual 

disturbance mechanisms in the various filter topologies and the effects of signal sampling 

frequency on disturbance. 

 

1.4 Statement of problem 
 
Frequency response distortions are introduced by the s to z-plane mapping in on-line 

coefficient calculation schemes.  No work exists that analytically compares frequency 

response distortions and the computational load introduced by existing s to z plane 

mapping techniques for the various filter types required (low and high pass, shelving and 

bell filters). No research has studied the effects of higher sampling frequencies on 

response distortion.  Furthermore there is a need to investigate novel mappings with 

minimal response distortion and computational load. 

The benefits of important topologies are diminished by the need for scaling to prevent 

overflow in fixed point implementations. These important topologies can be implemented 

without scaling in floating point arithmetic.  There is a need to investigate and compare 
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the behaviour of these topologies in floating point implementation.  Some topologies are 

immune to accumulator overflow in fixed point implementations through the use of twos-

complement modulo wrap-round.  There is a need to compare the behaviour of these filter 

topologies in fixed and floating point implementations.  Work to date has relied on 

theoretical quantisation noise models in the examination of filter topology behaviour.  

There is a need to investigate the behaviour of filter topologies under finite wordlength 

constraints, using actual signals as input stimuli.  This may highlight further distortions 

and non-linear behaviour in discrete-time filters implemented in fixed and floating point 

arithmetic.  No work to date, known to the author, has assessed the finite wordlength 

effects of the various topologies operating at higher sampling rates. 

There appears to be no research describing the disturbance mechanisms and resulting 

signal behaviour in the popular equaliser filter topologies under coefficient update.  

Mourjopoulos et al (1990) and Hanna (1994) suggest that the type of input excitation has a 

large effect on the resulting disturbance.  However no work to date has examined the 

disturbance effects under various input excitations.  No work to date has studied the 

disturbance effects of the various different filter response changes possible in a digital 

equaliser.  Furthermore, no comparison has been made of the coefficient interpolation 

schemes devised to reduce coefficient update disturbance.  No research, known to the 

author, has investigated the actual behaviour of the coefficient interpolation schemes 

under finite wordlength arithmetic or the effects of higher signal sampling rates on 

coefficient update disturbance.  The above research issues need to be addressed for the 

successful development of efficient high quality audio equalisers. 

 

1.5 Project aim and objectives 
 
The primary aim of the project is to investigate distortions associated with the efficient 

implementation of discrete-time equalisers.  Specific objectives of the project are to: 



                                                                                                                                         Chapter 1 Introduction 

 11 

• Investigate and develop novel techniques to minimise distortions during coefficient 

calculation paying particular attention to computational efficiency.  The expected 

outcome is a knowledge base of the performance of various s to z-plane mapping 

techniques which are suitable for coefficient calculation for real time varying filters 

incurring minimal static frequency response distortion. 

 
• Assess the impact of factors such as wordlength, type of arithmetic and input 

excitation on the performance (or noise behaviour) of digital equalisers.  This will 

involve developing an environment for emulating discrete time domain filters with 

variable wordlength and arithmetic.  The environment will be developed in Mathcad, a 

visual and graphical mathematical design software package, (Mathsoft, 1998).  

Various filter topologies will be implemented and noise analysis under various input 

excitations will be performed.  The effects of higher sampling rates will be examined.  

This will provide an understanding of the behaviour of filter topologies under fixed 

and floating point arithmetic with varying wordlengths. 

 
• Investigate signal disturbance behaviour for various filter topologies under coefficient 

update.  The effects of various input stimuli and filter settings on signal disturbance 

will be examined.  This is expected to produce an understanding of the relationship 

between input excitation, frequency response, filter topology and resulting signal 

disturbance.  The performance of the various interpolation techniques in the 

minimisation of signal disturbances will be examined as well as the sensitivity of the 

various interpolators to finite wordlength arithmetic and sampling rate. 

 

1.6 Outline of thesis 
 
The basic theory of real-time digital audio equaliser systems commonly associated with 

digital audio mixing systems is described in Chapter 2.  Various audio filter types, existing 
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coefficient calculation techniques and update methods are described.  The various filter 

topologies studied in this work are described in detail. 

The work on digital equaliser coefficient calculation techniques is described in Chapter 3.  

This work examines existing s to z-plane mappings and develops novel mapping 

techniques with the aim of minimal response distortion and computational load.  The 

effects of higher sampling frequencies on response distortion are also examined. Optimal 

mapping techniques are suggested for each the sampling frequencies considered. 

Chapter 4 describes the development of finite wordlength arithmetic functions for use in 

the filter topology emulation environment.  These functions emulate the finite wordlength 

behaviour of fixed and floating point arithmetic, for any given fractional wordlength and 

binary coding scheme.  Arithmetic tests were performed, finding the emulated arithmetic 

identical (bit exact) to a specific DSP platform (Appendix A). 

Chapter 5 describes an investigation into filter topology behaviour under finite wordlength 

arithmetic.  Filter topologies are implemented in the discrete-time domain, in fixed and 

floating point arithmetic, of varying wordlengths.  Distortions generated by various 

different input stimuli are presented.  The noise behaviour for filter topologies operating at 

higher sampling frequencies is also investigated. 

Chapter 6 describes the investigation of topology behaviour under coefficient update.  

Various input stimuli and frequency response changes are used to examine the disturbance 

mechanisms in discrete-time filter topology implementations.  The effectiveness of 

parameter and coefficient interpolation schemes is also assessed.  Furthermore disturbance 

effects at higher sampling frequencies are presented.  Chapter 7 reviews the work done, 

suggesting future work and presents the conclusions of the project. 
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2 Basic theory of real-time digital audio equaliser 
systems 

 
 
 
 
 
 
 
 
 

2.1 Introduction 
 
Parametric equalisation is normally found on every audio channel in a mixing system. The 

equaliser is a group of user controllable cascaded filters.  The mixing system operator 

(user) manipulates the filter types and parameters, in real-time, to produce a desired 

frequency response.  This chapter provides a background into real-time user controllable 

digital audio equalisers.  There are three main aspects in digital equaliser systems - filter 

specification and coefficient realisation, topology implementation under finite wordlength 

arithmetic and the management of coefficient update for real time control.  These three 

aspects are the main topics of this chapter. 

 

2.2 Audio Filter Equaliser types 
 
Filter types commonly found in equaliser systems are bell (peaking), low frequency (LF) 

shelving, high frequency (HF) shelving, notch, low and high pass second order functions.  

This section discusses their basic magnitude frequency response attributes, the associated 

filter parameter controls and their application in audio equalisation.  All of these filter 

functions are primarily considered to be magnitude frequency equalisers with a non-linear 

minimum phase response. 
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2.2.1 Bell filter 
 
Figure 2-1 shows typical bell filter magnitude frequency response curves.  The three 

essential user controllable parameters are the peak gain tuned frequency (Fc); the peak 

gain or attenuation (G) and the bandwidth/Q factor (Q).  The tuned frequency, Fc, 

determines the maximum peak or minimum trough in the magnitude frequency response 

and has an operable range between 20 Hz to 20 kHz.  The amount of peak or trough (boost 

or cut) is user controlled by a gain control parameter, G.  Typical gain settings are ±18 dB.  

If G is positive then a gain is applied producing a boost at the tuned frequency.  If G is 

negative then attenuation is applied, producing a cut at the tuned frequency.  On either 

side of the tuned frequency the response slope tends towards unity gain.  The selectivity is 

controlled by the Q factor (Q) or bandwidth control (typical Q settings range from 0.1 to 

10).  There are many equaliser design variations leading to different relationships between 

Q and gain G, (Tromans, 1995; Bohn, 1986).  Many analogue equaliser designs have a 

non-constant Q relationship with variation in gain, G.  This was historically for cost 

reasons, however this does produce low Q (wide bandwidth) for small values of G.  This 

is often said to be useful for subtle changes in gain.  Constant Q equalisers use a Q factor 

that is independent of gain, G; and provides accurate control of gain and bandwidth.  

Furthermore, there are two important variants of constant Q equalisers, asymmetric and 

symmetric Q.  These variants differ in response for the cut case (attenuation at tuned 

frequency).  The asymmetric variant produces a constant bandwidth at the –3 dB gain 

points.  The symmetric variant defines bandwidth at 3 dB less than the tuned frequency 

gain.  This produces a symmetrical magnitude frequency response with the boost case and 

can be used to correct earlier equalisation, by simply negating the gain setting.  In this 

thesis the constant Q boost variant, with a symmetrical cut response, shown in Figure 2-1, 
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is used.  Further details about the relationships between Q and bandwidth can be found in 

the literature (Moorer, 1983; White, 1985; Bristow-Johnson , 1994; Tromans, 1995). 
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Figure 2-1 Magnitude frequency response of typical bell filters 

  

2.2.2 Shelving filters 
 
Low frequency (LF) and high frequency (HF) shelving filters are used to boost or cut LF 

and HF frequency regions respectively.  Figure 2-2 shows typical magnitude frequency 

response curves for the LF and HF shelving filter functions.  The LF shelf provides user 

controlled boost or cut gain from dc (zero Hertz) up to the corner (tuned) frequency, which 

may be defined as the frequency at which the gain is one dB less than the maximum gain.  

As frequency increases the magnitude response slope tends towards unity gain.  The HF 

shelf provides unity gain at dc and user controllable gain (cut or boost) at high 

frequencies.  Both LF and HF shelving filters have corner frequency controls providing 

the user with the ability to control the frequencies that are affected by the gain control. 

The slope in the magnitude response between the maximum gain and unity is sometimes 

user controllable and typically between three to nine dB per octave.  Historically, first 
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order shelving functions were used as treble and bass controls, providing a gentle slope, 

typically less than four dB per octave.  For the purposes of this work only second order 

shelving functions are considered. 
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Figure 2-2 Magnitude frequency response of LF and HF shelving filters 

 

2.2.3 Notch filter 
 
The notch filter is a rare function in a mixing system, since the bell cut filter with a high Q 

setting can provide almost an identical response.  However, digital equalisers are 

increasingly being used in many novel equalisation applications.  Notch filters are useful 

in acoustic feedback, resonance elimination.  The notch filter has a controlled centre 

frequency and produces a theoretical zero transmission at this tuned frequency.  The 

bandwidth of a notch filter is specified by the two –3 dB gain points.  Bandwidths are 

typically narrow, e.g 5 to 20 Hz.  Alternatively bandwidths can be dependent on the filters 

tuned frequency - 1/3rd to 1/12th octave are typical.  The magnitude response of a 20 Hz 

tuned notch filter, with a –3 dB bandwidth of 7.5 Hz is shown in Figure 2-3. 
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Figure 2-3 Magnitude frequency response of a notch filter 

 

2.2.4 Low and High pass filters 
 
Audio equalisers typically include low and high pass filters to eliminate noise from the 

audio channel.  These are fixed slope (Q), unity gain filters with one tuned frequency 

control, defined at the –3dB edge frequency.  In addition to this, digital audio mixing 

systems include low and high pass filter functions for basic speaker cross-over 

applications.  Cross-over filters are usually high order functions, ranging from 6 to 48 dB 

per octave with various slope and phase responses (Butterworth, Bessel and Linkwitz-

Riley).  The decomposition of such high order slope responses leads to a cascade of 

second order filters, where the manipulation of each of the filter’s Q factor can produce 

any of the desired responses.  Since these decomposed Q factors are nominally in a region 

between 0.58 to 0.8, a Butterworth response (0.7071) is used for the purposes of this work.  

Figure 2-4 shows low and high pass filter functions, tuned to 400 Hz with a Butterworth 

slope response. 
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Figure 2-4 Magnitude frequency response of LF and HF pass filters 

 

2.3 S-plane to z-plane transforms 
 
Generalised s-plane expressions for the bell, shelving and pass filter functions are given in 

Equations (2-1) to (2-5), where Ωc equals 2 π Fc, and Fc represents the tuned frequency of 

the filter.  For convenience, the variables A and B are functions of Gain, G and Q factor 

(bandwidth or slope).  Expressing these parameters as generalised variables, A and B, 

provides a comprehensive solution for coefficient calculation, whereby A and B can be 

substituted for a particular Gain-Q relationship, as discussed in Section 2.2. 
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The standard z-transform, matched z-transform and bilinear z-transform are three 

techniques used to convert s-plane transfer functions to z-plane transfer functions.  

Standard z-transforms (SZT) are time invariant and preserve the filter’s impulse or step 

response (often referred to as impulse and step invariant). Whilst the SZT preserves the 

filter’s time response, the resulting frequency response suffers from large errors that 

cannot be corrected (Clark et al, 1996). 

‘Direct pole and zero placement’ on the z-plane is an alternative and simple efficient 

method of realising some filter functions such as notch filters, Equation (2-6), where Ts 

denotes the sampling interval.  However, the bell, shelving and pass filters all require a 

transformation technique to realise a transfer function in the z domain. 
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BZT ‘s to z’ mapping, given in Equation (2-7).  The BZT band-limits the frequency 

response of the filter to within the Nyquist frequency and so avoids the problem of fold-

over aliasing.  However, the band-limiting effect of the BZT distorts the frequency 

response of the filter - the so-called warping effect.  Various techniques exist that preserve 

(pre-warp) specific response attributes or parameters to counteract the warping effects of 

the BZT.  Equation (2-8) shows a standard technique for compensating the warping effect 

at a given frequency, Fc.  The pre-warped frequency, Fprewarped , then replaces Fc in the z-

plane transfer function. 

   
 

         (2-7) 
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2.3.2 Matched z-transform (MZT) 
 
In the MZT method, real and complex s-plane poles (or zeros) are mapped onto the z-

plane using substitutions given in Equations (2-9) and (2-10) respectively.  The MZT maps 

s-plane poles and zeros directly onto the z-plane with no band limiting at the Nyquist 

frequency.  The resulting discrete-time filter suffers from two forms of response distortion.  

An overall gain shift (dc offset) and an image response distortion towards the Nyquist 

frequency.  The MZT has been used to generate shelving and bell functions (McNally, 

1979; Hirata, 1980), however the resulting response distortions were not explored. 

 

1
12

+
−

⋅=
z
z

Ts
s



                                                                  Chapter 2 Basic theory of real-time digital audio equaliser systems 

  21

         (2-9) 

 

 

         (2-10) 

 

2.4 Implementation of discrete-time filters 
 
The s to z-plane mapping techniques discussed in Section 2.3 produce z-plane transfer 

functions of the general form given in Equation (2-11).  This can be implemented through 

the discrete-time domain difference equation, (2-12).  A direct implementation of this 

difference equation produces the Direct Form 1 (DF1) topology, shown in Figure 2-5.  

The DF1 topology is a ‘zero before pole’ topology whereby its zero transfer function 

operates directly on the current input sample, xi , the previous two input sample instances, 

xi-1  and xi-2 .  The zero transfer function feeds the single accumulator.  The accumulator 

feeds the output, yi , and the pole transfer function.  The pole transfer function recursive 

paths, that is the previous output sample (yi-1) and second from previous output samples 

(yi-2), feedback into the accumulator. 
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Figure 2-5 Direct Form 1 (DF1) second order filter topology,  ‘s’ and ‘d’ denote single and double 
precision wordlengths, ‘c’ denotes the wordlength of the coefficients. 

 

2.4.1 Fixed point data formats 
 
Fixed point, 24 bit processing is widely used in audio processing applications.  

Furthermore in (Analog Devices, 1997) a DSP platform capable of 32 bit fixed and 

floating point arithmetic is described.  Both 24 and 32 bit fixed point wordlengths are 

considered in this work, Figure 2-6.  Fixed point arithmetic typically uses twos-

complement and not sign magnitude binary representation, due to multiplier efficiency.  

Fixed point DSP’s typically use fractional representation for the inputs to the multiplier 

(fractional normalised inputs).  For example, a 24 bit twos-complement fractional format 

uses 23 fractional bits and one sign bit (1.23).  The numerical range of twos-complement 

1.23 format is (1-2-23) to –1.  The fixed point multiplication product requires twice the 

number of fractional bits, in addition to the sign bit.  For example, multiplying two 1.23 

numbers produces a number format of 1.46.  If the result is represented with less fractional 

bits a quantisation error is introduced.  Fixed point accumulation does not produce any 

increase in fractional wordlength.  Therefore two 1.23 numbers can be summed to produce 

a fractional result of 1.23 without any fractional quantisation.  However, fixed point 
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accumulation can produce integer wordlength growth and as a result most accumulator 

implementations provide some headroom integer bits (guard bits). 

Figure 2-5 shows the data path wordlengths for the DF1 assuming single precision fixed 

point implementation.  Single precision implementation means that the state variables are 

stored at the same precision as the multiplier input and data bus wordlengths of the 

processor.  Single precision wordlengths are denoted by ‘s’ in the DF1 topology, Figure 

2-5.  The product accumulation is performed at double precision wordlength, denoted by 

‘d’.  This ensures that no fractional quantisation is necessary in the summation of the 

products.  Thus one quantisation point exists at the accumulator output where the data is 

quantised from double to single precision for state variable storage.  This quantisation 

noise source is greatly amplified by filters with high gain in the pole transfer function.  

Consequently in critical filtering applications the use of first and second order error 

feedback to reduce quantisation noise in 24 bit implementations has been required 

(Wilson, 1993).  Alternatively, modern fixed point processors provide efficient 

instructions to facilitate double precision multiplication (Motorola, 1999).  This can 

eliminate the quantisation noise source at the accumulator output and eliminate high pole 

gain noise problems. 

Fixed point filter topologies rely on coefficient scaling techniques to ensure all 

coefficients are within the numerical range of the arithmetic (typically fractional).  DF1 

coefficient scaling is performed by dividing the coefficient set by a global scaling factor, 

2n.  This scaling factor ensures all coefficients are within the numerical range.  The 

coefficient scaling is compensated by multiplying the accumulator output by the scaling 

factor (n arithmetic shifts left).  The scaled coefficients and arithmetic shifting operate on 

double precision data and therefore do not incur any additional quantisation noise in a 

single precision implementation. 
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A major disadvantage of fixed point arithmetic is accumulator overflow.  Overflow can be 

alleviated through scaling, with the penalty of a reduction in signal to noise ratio.  There 

are various scaling strategies that may be used, for example L1, L2 and L∞ norms.  An 

excellent review of these is given in (Massie, 1993).  In principle the most conservative 

scaling strategy, L∞ norm, should be used for professional audio equipment, since 

overflow must be prevented.  However, the actual scaling scheme is filter response 

dependent and to obtain optimal scaling at all times scaling factors must be calculated for 

every filter setting.  Some topologies can utilise twos-complement modulo wraparound 

schemes (the Jackson rule), (Jackson et al, 1968; Dattorro, 1988) to prevent intermediate 

accumulator overflow.  This produces infinite headroom for intermediate accumulation 

results if the filter is stable and does not produce a final accumulator result outside the first 

modulo.  Topologies that rely on scaling for fixed point implementation are typically 

avoided in professional audio equaliser applications. 
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Figure 2-6  Fixed point wordlength formats 

 

2.4.2 Floating point data formats 
 
There are two floating point implementations typically found in signal processing 

platforms (Analog Devices, 1997; Texas Instruments, 1992).  The first floating point 

platform (Texas Instruments, 1992) uses twos-complement binary coding.  This scheme 

uses a twos-complement mantissa and exponent, providing an exponent range of 2±127.  



                                                                  Chapter 2 Basic theory of real-time digital audio equaliser systems 

  25

The second floating point scheme has been standardised by (ANSI/IEEE754, 1985) and 

(ANSI/IEEE854, 1987), here referred to in this thesis as IEEE floating point.  This uses 

sign magnitude binary coding.  The exponent for the IEEE format uses an unsigned eight 

bit field, biased by 127, providing a range of 2±127.  Despite existing definitions for double 

precision floating point, it is rare for existing DSP platforms to support double precision 

arithmetic.  The two floating point platforms considered in this work provide an extended 

precision format, shown in Figure 2-7.  Extended precision formats provide higher 

fractional resolution in the mantissa, without an increase in exponent range.  It is also 

common that the product registers and addition/subtraction are implemented in extended 

precision.  Since extended precision does not provide twice the fractional bits in the 

mantissa as the single precision, it is possible to introduce quantisation in the product and 

addition registers.  Therefore extended precision implementation (storing state variables in 

extended precision) does not eliminate quantisation. 

The pole transfer function of an audio filter can produce gains in the region of 120 dB, 

Figure 5-2.  The operating range of an eight bit exponent (1500 dB) facilitates the 

implementation of any topology without arithmetic or coefficient scaling to avoid 

overflow.  However, floating point arithmetic still uses a finite wordlength mantissa and 

relies on normalised data for arithmetic operations.  Therefore quantisation noise still 

exists within filter structures. 
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Figure 2-7 Floating point formats 
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2.4.3 Coefficient sensitivity 
 
Coefficients are typically quantised to the multiplicand wordlength, denoted ‘c’, in Figure 

2-5.  This produces static quantisation errors in the coefficient set distorting the pole zero 

placements and the filter’s frequency response.  Coefficient sensitivity to quantisation is 

topology dependent and is widely researched (Dattorro, 1988; Wilson, 1993; Wise, 1998).  

Direct Form topologies produce the worst coefficient quantisation effects on frequency 

response.  Direct Form topologies produce poor frequency responses for high Q filters 

tuned to low frequencies.  At a sampling frequency of 48 kHz using 24 bit coefficients, 

direct form topologies cannot reproduce accurate frequency responses for high pass filter 

tuned to less than 10 Hz.  As suggested in (Wise, 1998) alternative topologies can 

reproduce critical case filter responses.  Furthermore the use 32 bit or 24 bit double 

precision (46 fraction bits) provide ample coefficient resolution for direct form audio 

filtering implementations, even at higher sampling rates such as 192 kHz. 

 

2.5 Alternative filter topologies for implementing discrete-time 
filters 

 
Alternative filter topologies to the DF1 are introduced in this section.  Topology diagrams 

are given for each topology studied.  Quantisation points for single precision 

implementation are shown on each of the topology diagrams.  Two topologies that have 

not been studied in this work are the Agarwal-Burrus structure (Agarwal-Burrus, 1975) 

and the Ding-Rossum structure (Ding and Rossum, 1995).  The Agarwal-Burrus structure 

replaces unit delays with integrators, which are reported to produce dc instability in 

(Moorer, 1999).  The Ding-Rossum structure is reported to be suitable for particular filter 

types and does not suit this work’s objective of a filter structure suitable for many filter 

types, as described in Section 2.2. 
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2.5.1 Direct Form 2 (Canonical Form) 
 
Figure 2-8 shows the DF2 topology diagram.  The topology is often referred to as the 

canonical form since it only requires two memory locations.  The topology is ‘pole before 

zero’ and has one quantisation error source for single precision implementation.  

Consequently the error transfer function contains poles and zeros.  The topology cannot 

utilise modulo wrap-round to avoid accumulator overflow and relies on input scaling to 

avoid overflow in fixed point implementations. Therefore in this work the topology is 

implemented under floating point arithmetic. 
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Figure 2-8 Direct Form 2 filter topology 

 
 
 

2.5.2 Transposed Direct Form 1 (DF1T) 
 
The transposed Direct Form 1 (DF1T) is a pole before zero topology and more similar to 

the DF2 than the DF1, Figure 2-9.  The topology has four potential quantisation points in 

single precision implementation.  The DF1T relies on scaling to prevent accumulator 

overflow in fixed point implementations.  In this work the topology is implemented in 

floating point arithmetic. 
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Figure 2-9 Transposed Direct Form 1 (DF1T) filter topology 

 
 
 

2.5.3 Transposed Direct Form 2 (DF2T) 
 
The transposed Direct Form 2 (DF2T) is a zero before pole topology and more similar to 

the DF1 than the DF2, Figure 2-10.  The topology has three potential quantisation points 

in single precision implementation.  The DF1T can utilise modulo wrap-round to avoid 

accumulator overflow in fixed point implementations. In this work the topology is 

implemented in fixed and floating point arithmetic. 



                                                                  Chapter 2 Basic theory of real-time digital audio equaliser systems 

  29

xi Q

pole transfer
function

implementation

yiΣ

zero transfer
function

implementation

 Z
-1

Σ

 Z
-1

 a1

a2
Q

 a0

Q
-b1

-b2

Σ
 

Figure 2-10 Transposed Direct Form 2 (DF2T) filter topology 

 

2.5.4 Coupled form topologies (Gold-Rader, Zölzer, Kingsbury) 
 
The Gold-Rader (Gold and Rader, 1967), Kingsbury (Kingsbury, 1972) and the Zölzer 

(Zölzer, 1991) are all ‘coupled form’ topologies, Figure 2-11, Figure 2-12 and Figure 

2-13.  Using the zero transfer function implementation of the Direct Form, coupled with 

different implementations of the pole transfer function produces low coefficient sensitivity 

properties for the pole placements.  The topologies require scaling to avoid accumulator 

overflow in fixed point implementation.  Theoretical quantisation noise models are 

developed in (Wilson, 1993; Zölzer, 1991).  (Wilson, 1993) compares the scaled Gold-

Rader to the DF1 in fixed point implementation.  The low frequency performance of the 

Gold-Rader is found to be similar to DF1 with error shaping.  (Zolzer, 1991) develops 

theoretical noise models for the three topologies, assuming no scaling and documents 

theoretical signal to noise ratios for the three topologies for different tuned frequencies 

assuming a Q factor of 0.7071.  This work considers the unscaled topologies implemented 

in floating point arithmetic.  Coefficient realisation is given in Appendix D. 
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Figure 2-11 Gold Rader filter topology 
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Figure 2-12 Kingsbury filter topology 
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Figure 2-13 Zölzer filter topology 
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2.5.5 State-space topology 
 
Figure 2-14 shows the state-space topology diagram.  The topology is intrinsically scaled 

to the L2 norm to reduce overflow in fixed point implementation.  Mullis and Roberts 

(1976) shows that the topology produces excellent noise performance in fixed point 

implementations, since its noise characteristics are only dependent on filter bandwidth, not 

frequency.  It is also stated that L2 scaling produces near optimal noise characteristics 

within the topology.  However L2 scaling does not eliminate accumulator overflow 

therefore the state-space topology is implemented in floating point arithmetic in this work. 
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Figure 2-14 State-space filter topology 

 

2.5.6 State-space hybrid (Cabot) topology 
 
The state-space hybrid (Cabot) topology, Figure 2-15, uses the zero transfer function of 

the direct form and couples that with the pole transfer function implementation of the 

state-space topology, (Cabot, 1992).  The hybrid topology is less complex than the state-

space topology.  Coefficient calculation is simplified compared to that of the state-space 

topology.  In Cabot (1992) it is claimed that is produces truncation noise and stability 

characteristics like those of the state-space form.  In this work this topology is 

implemented in fixed and floating point. 
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Figure 2-15 State-space hybrid (Cabot) filter topology 

 

2.5.7 Ladder and lattice structures 
 
All of the filter types discussed in Section 2.2 can be realised using allpass filters 

embedded in gain stages (Regalia et al, 1988).  Allpass implementations produce efficient 

one to one parameter to coefficient mappings, for some filter types and parameters.  

However this work focuses on generic filter functions, eliminating this advantage.  In 

Massie (1993) the implementation of allpass gain structures using lattice and ladder 

allpass filters for audio equalisation is described.  Both the lattice and ladder allpass 

topologies are ‘pole before zero’, see Figure 2-16 and Figure 2-17.  The second order 

structures are two nested first order functions.  The ladder uses L2 scaling at internal 

accumulation nodes, however L2 scaling is not immune from overflow (Massie, 1993).  

The lattice structure uses no scaling and is prone to accumulation overflow under fixed 

point arithmetic.  The ladder can also be used as a non-allpass filter by appending a zero 

transfer function to the allpass network as shown in Figure 2-18.  This method is used for 

implementing audio filters in (Moorer, 1999) and will be referred to in this work as the 

Moorer (ladder) implementation.  The use of a gain stage with the allpass ladder and 
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lattice topologies will be referred to as Massie implementations.  All implementations will 

use floating point arithmetic.  
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Figure 2-16  Allpass filter, lattice topology 
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Figure 2-17  Allpass filter, ladder topology 
 

yi

Σ

 Z
-1

c2

xi

Σ

-k2

 Q

k2

c2

Σ

 Z
-1

c1

Σ

-k1

 Q

 Q

k1

c1

v0
v1

v2

 Q

Σ

 
Figure 2-18  Ladder filter with appending zeros (Moorer) 
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Figure 2-19  Structure for realising filter functions using an allpass filter (Regalia) 

 

2.6 Real-time user controllable filter systems 
 
Figure 2-20 shows a diagram of a real time user controllable digital equaliser system.  

There are four components in the system: the human interface (control surface), a 

coefficient calculation process, a parameter or coefficient interpolation section and the 

time-varying filter. 
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Figure 2-20  Real-time user controllable equaliser system (using coefficient interpolation) 
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2.6.1 Control surface 
 
The control surface is a collection of controls which allows the user to select filter type 

and manipulate filter parameters in real-time.  There are various ways a control can 

change; through user manipulation, a pre-programmed scene change (patch recall), or an 

automated performance change controlled by a sequencer.  The equaliser system has to 

accommodate single and continuous filter control changes, across multiple channels of 

audio equalisers.  The control surface sampling rate is the rate at which all associated filter 

parameters are sampled and subsequently updated.  A control sampling rate in the region 

of 25 frames per second (an interval of 40ms) is widely accepted as a suitable control 

sampling rate, based upon visual perception of ‘instantaneous’ and ‘smooth’ control 

(SMPTE1 frame rates).  The audio equipment manufacturing industry tends to provide 

faster control sampling rates for critical audio controls such as audio level and channel 

mute controls.  This is due to audio engineers requiring faster time responses (typically 

100 frames per second) during musical reproduction arrangements.  However filtering 

controls are not considered as critical and the more typical sampling rate of 25 frames per 

second is widely adopted. 

 

2.6.2 Coefficient calculation 
 
The second system component is the coefficient calculation section which maps filter 

parameters to a set of filter coefficients.  On-line parameter to coefficient mapping is 

computationally intensive and needs to be accurate to avoid frequency response errors.  

Look-up tables can be used to provide a minimal computational load.  However, the use of 

look-up tables restricts the potential number of filter types and parameter settings available 

to the user.  Implementing look-up table schemes with extensive parameter settings and 
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filter types can also lead to the requirement of costly memory.  For this reason, various on-

line coefficient generation schemes are discussed in Chapter 3. 

 

2.6.3 Time-varying filter topology 
 
A time-varying filter is a filter structure with time varying coefficients.  Equation (2-13) 

gives the discrete time domain expression for the DF1 topology, where the coefficient set 

{a0, a1, a2, b1, b2} varies as a function of time, sample to sample, where i denotes the 

sample instant.  Any step change in the set of coefficients {a0, a1, a2, b1, b2} in time 

causes a filter state change.  The time varying-filter topology is required to realise many 

different filter types with many different parameter settings.  Therefore any filter 

structures that are limited to certain filtering functions have to be discounted. 

 

2121 21210 −−−− ⋅−⋅−⋅+⋅+⋅= iiiiiiiiiii ybybxaxaxay  

          (2-13) 

 
State changes in discrete-time varying filters produce signal disturbances at the filter 

output.  Like any discrete-time control system, the disturbance magnitude is proportional 

to the step change magnitude. By increasing the update (sampling) rate of the coefficients 

sets presented to the time varying filter the magnitude of the filter state change is reduced.  

Parameter and coefficient interpolators are two alternative processes that reduce filter state 

change disturbance in this way.  These two different interpolation techniques are discussed 

in the following two sections. 

 

2.6.4 Coefficient interpolation 
 
A user controllable filtering system using coefficient interpolation is depicted in Figure 

2-20.  This scheme performs the parameter to coefficient mapping, then increases the 

coefficient update (sampling) rate. Therefore the computationally intensive parameter to 
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coefficient mapping is performed at the slower, control surface sampling rate.  However, 

the parameter to coefficient mapping is non-linear and the intermediate coefficient sets 

produced by the interpolator do not reproduce known intermediate filter responses.  There 

are three interpolation techniques commonly used as coefficient interpolators in audio 

systems; linear, exponential and sinusoidal interpolation. 

Linear interpolation between a ‘start’ and ‘target’ coefficient, over N samples, can be 

described by Equation (2-14).  The number of samples N equals the desired interpolation 

time, Iperiod, multiplied by the interpolation sample rate, Fs. 

 

ci ci 1 δ

where,

δ
target start( )

N

N Iperiod Fs.
     (2-14) 

 
A typical linear interpolation is shown in Figure 2-21.  Each interpolation sample within 

an interpolation period is of a fixed step-size, δ.  Updating the step size, δ, will determine 

exactly how the interpolator will behave in the next interpolation period.  The 

implementation of the algorithm needs to ensure that the interpolation stops at the target 

and does not end up extrapolating.  This can be done by forcing the increment, δ, equal to 

zero after N samples or by disabling the interpolation completely after this period. 

A first order exponential interpolation is described by Equation (2-15), where, k, is the 

damping factor.  The damping factor, k, is a function of the interpolator sampling rate, Fs 

and the time constant, τ.  The time constant, τ, is the time required for the interpolator to 

reach two thirds of its final value.  A typical exponential interpolation is shown in Figure 

2-21.  At the start of the interpolation the step-sizes are large, at the end of the 
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interpolation the step-sizes tend towards zero.  By updating the target variable every 

interpolation period the interpolation tends towards the new defined target. 

 
ci ci 1 k target ci 1

.

where,

k 1 e

1
Fs τ.

    (2-15) 

 
Sinusoidal interpolation of audio filter coefficients is implemented in Rimell and 

Hawksford (1996).  An example of sinusoidal interpolation is shown in Figure 2-21.  The 

step size is largest in the middle of the interpolation period and tends towards zero at the 

start and end of the interpolation period.  There are numerous methods of implementation.  

One technique is shown in Equation (2-16).  The interpolation is controlled at the start 

point through variables, dv, ddv and Const, Equation (2-16).  At the end of the 

interpolation period the variables, dv, ddv and Const are set to zero to disable the 

interpolation at the end target value. 

 
vi vi 1 dvi 1

dvi dvi 1 ddv i 1

ddv i ddv i 1 Const

where the follow variables are initialised 
at the beginning of the interpolation period

dvinitial target start( ) 3 N. 2( )

N3
.

ddv initial
6 target start( ). N 2( ).

N3

Const 12 target start( ).

N3
 

          (2-16) 
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Figure 2-21 Typical coefficient interpolation functions, operating on a variable changing between 0.87 
and 0.99. 

 
The interpolation period for all of the techniques is set to equal the control surface 

sampling interval, typically 30 to 50 ms (Section 2.6.1).  This results in a smooth data 

interpolation between control surface sampling intervals.  The sinusoidal and linear 

interpolators are tuned through the constant, N (number of samples per interpolation 

period).  Tuning the exponential interpolator is more complex.  Setting the time constant, 

τ, to the control surface interval, Iperiod, results in the interpolation reaching two thirds of 

its travel in the interval.  Setting, τ, to say 15 times Iperiod means the interpolation 

completes prematurely with large step changes.  The selection of τ, within the constraints 

of this work, are discussed further in Chapter 6. 

The final value error can be defined as the difference between the target value and the 

actual value produced by the interpolator at the end of the interpolation period.  The error 

is an effect of the interpolator implementation under finite wordlength arithmetic.  Final 

value error in coefficients can produce large frequency response errors in the target filter.  

‘Clamping’ techniques are used to ensure that the interpolator reaches the target 
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coefficient at the end of the period, effectively reducing the final value error to zero.  

Clamping linear and sinusoidal interpolators can be performed by detecting the 

interpolation period has completed and then replacing the final value in the interpolator 

with the target coefficient.  The exponential interpolator clamp is best implemented by 

detecting the interpolator has reached steady state (the interpolator is no longer changing 

the coefficient) and then replacing the current interpolator value with the target.  This 

produces a small step change at the end of the interpolation but ensures zero steady state 

error. 

 

2.6.5 Parameter interpolation 
 
A user controllable filtering system using parameter interpolation is shown in Figure 2-22.  

This method performs the interpolation (increase in sampling rate) in the parameter 

domain, prior to the parameter to coefficient mapping.  This ensures that every 

intermediate set of coefficients presented to the time varying filter is a proper known set of 

coefficients, which would produce the associated intermediate frequency response.  There 

two disadvantages of parameter interpolation.  Operating the parameter to coefficient 

mapping process at the higher sampling rate incurs a considerable increase in 

computational load.  Since the parameter to coefficient mapping process is 

computationally intensive.  The second disadvantage concerns the problem of filter type 

switching.  Parameter interpolation schemes are easily implemented in conditions where 

parameter settings change between two known states.  However if the filter state change 

involves a filter type change, there is still a potential discontinuity.  Techniques of 

parameter management for interpolating between filter types are discussed in (Zölzer, 

1993).  However these techniques involve an allpass intermediate state. 
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2.6.6 Sub-sampled interpolators 
 
Implementing multiple band equalisation across multiple audio channels with real time 

parameter control potentially involves a high number of coefficients needing to be updated 

per interpolator sample period.  Therefore operating the interpolators at the signal 

sampling frequency is not computationally economical.  Coefficient interpolators 

operating at the signal sampling rate consumes as much computational resource as the 

filter.  Operating parameter interpolator schemes at the signal sampling frequency would 

be exhaustive due to the parameter to coefficient mapping.  Coefficient and parameter 

interpolation schemes are commonly sub-sampled reducing the interpolation processing 

load exerted on the DSP.  Investigations into the audible effects of parameter interpolation 

sampling rates are detailed in (Mourjopoulos et al, 1990; Hanna, 1994). 
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Figure 2-22 Real-time user controllable equaliser system (using parameter interpolation) 
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2.7 Summary 
 
The purpose of this chapter has been to present the basic theory of real-time digital audio 

equalisers, which underpins the work presented in subsequent chapters.  Audio equaliser 

filter types and associated control parameters have been specified.  Existing transform 

methods of mapping continuous-time (s-plane) transfer functions into discrete-time (z-

plane) transfer functions have been introduced.  The implementation of the filter transfer 

function as a discrete-time difference equation under fixed and floating point arithmetic 

formats has been discussed.  Effects of quantisation, caused by finite wordlength 

arithmetic are introduced with the discussion of several filter topologies that are studied in 

this work.  Finally an overview of schemes that are used to provide real time user 

controllable parameters for discrete-time varying filters is given. 
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3 Techniques for calculating digital equaliser 
coefficients 

 
 
 
 
 
 
 
 
 

3.1 Introduction 
 
As discussed in Chapter 2, Section 2.6.2, on-line coefficient calculation in digital equaliser 

systems can provide greater parameter resolution and filter type selection than off-line 

techniques.  Offline techniques incur extensive and costly memory for coefficient look-up 

table requirements.  On-line techniques increase computational load and produce inferior 

discrete-time frequency responses compared to off-line coefficient generation techniques.  

With the increasing power of digital signal processing (DSP) technology, it is feasible and 

beneficial to implement both on-line coefficient calculation and the filter processing 

algorithms on the same processor.  Thus it is necessary to optimise the computational load 

for coefficient calculation and minimise the frequency response distortion.  Frequency 

response distortion is the difference between the desired frequency response (the ideal s-

plane response) and the resulting discrete-time frequency response. 

Techniques for on-line coefficient calculation using the bilinear z-transform (BZT) and 

matched z-transform (MZT) are well researched.  However, the issue of frequency 

response distortion has not been fully addressed.  In techniques based on the MZT (Mc 

Nally, 1979; Hirata, 1980), distortion due to aliasing errors was not considered.  In BZT 

based techniques, a number of pre-warping schemes have been developed to minimise the 

inherent frequency response distortion (Moorer, 1983; White, 1985; Shpak, 1992; 

Bristow-Johnson, 1994; Orfanidis, 1996).  However the response distortions produced by 
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the different schemes have not been compared.  At higher sampling rates, such as 96 and 

192 kHz, the nature of the response distortion will change because the Nyquist frequency 

is substantially higher than equaliser tuned frequencies. 

In this chapter, techniques for reducing response distortions due to aliasing in the MZT 

methods are presented.  The resulting response distortions are compared to those produced 

by existing BZT pre-warping schemes.  These on-line coefficient calculation techniques 

are evaluated in terms of frequency response distortion and computational load at the 

sampling frequencies of 48, 96 and 192 kHz.  The filter types considered are the LF and 

HF pass, LF and HF shelving and bell functions, as described in Chapter 2, Section 2.2 . 

Notch filters are realised through direct pole and zero placements onto the z-plane.  This 

method produces no response distortion at the centre frequency of the notch, ignoring 

finite wordlength coefficient sensitivity.  Notch filters are typically narrow bandwidth 

filters and do not suffer from response distortion towards the Nyquist frequency since their 

magnitude response is unity gain in this region.  Consequently notch filters are not 

considered further in this chapter. 

 

3.2 Frequency response distortion in BZT-based equalisers 
 
The BZT mapping of s-plane transfer functions into z-plane transfer functions is described 

in Chapter 2, Section 2.3.1.  This section reviews the frequency response distortions 

resulting from the use of the BZT to realise a z-plane transfer function from the s-plane 

ideal.  This section specifically examines discrete-time transfer function distortions 

assuming an operating sampling frequency of 48 kHz. 

 

3.2.1 LF and HF shelving filters 
 
The BZT provides a linear s-plane to z-plane mapping for LF tuned poles and zeros.  

Consequently, the LF shelving filter is not sensitive to the BZT warping effects since its 
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response is mainly concentrated in the LF region.  LF shelves with typical frequency 

settings (tuned corner frequency, Fc is less than 1 kHz) can be implemented using no pre-

warping, avoiding the tangent function.  However, for higher tuned frequency settings (2 

to 3 kHz) simply pre-warping Fc, Equation (2-8), does minimise response distortion 

further, albeit slightly.  Above one tenth of the sampling frequency, the frequency 

response distortion increases (increased slope roll-off).  The slope roll-off distortion for an 

extreme LF shelving filter setting (Fc equal to 2 kHz) is shown in Figure 3-1.  The 

resulting phase response is shown in Figure 3-2. 
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Figure 3-1 Magnitude response comparisons, LF shelving filter, Fc=2 kHz, boost gain=15 dB, Fs=48 kHz. 
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Figure 3-2 Phase response comparisons, LF shelving filter, Fc=2 kHz, boost gain=15 dB, Fs=48 kHz. 

 

The HF shelving filter is sensitive to magnitude slope distortion since the slope is 

inherently in the HF region, where the BZT does not provide a linear mapping.  An 

intuitive simple technique for reducing slope distortion is to reduce the Q factor (slope) as 

a function of frequency.  This can be conveniently achieved by pre-warping the Q factor 

by the same warping factor as that of the cut-off frequency as shown in Equation (3-1).  

This is also computationally efficient since only one pre-warping factor needs to be 

calculated, as shown in Equations (2-8) and (3-1).  The magnitude and phase response of 

the HF shelving filter, using the Fc/Q pre-warping method, is shown in Figures 3-3 and 3-

4.  The HF shelving filter can also be implemented without pre-warping although the slope 

distortion is greatly increased. 
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Figure 3-3 Magnitude response comparisons, HF shelving filter, Fc=12 kHz, boost gain=15 dB, Fs=48 
kHz.  
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Figure 3-4 Phase response comparisons, HF shelving filter, Fc=12 kHz, boost gain=15 dB, Fs=48 kHz. 

 

3.2.2 Low and high pass filters 
 
Most tuned frequency settings for low and high pass filters (LPF and HPF) are small with 

respect to the Nyquist frequency.  Consequently these filters suffer little response 

distortion caused by the s to z-plane mapping technique.  This is due to the high frequency 
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response being flat at unity gain for HPF and at a low attenuation level for the LPF.  

However in speaker cross-over applications, these filters are both tuned to higher 

frequencies specifically for the high to mid frequency cross-over filter.  An extreme 

example of a high to mid cross-over frequency would be in the region of 10 kHz.  Figure 

3-5 shows the response distortion for various BZT schemes realising a 10 kHz, 

Butterworth HPF.  The BZT using no prewarping produces a 1.5 dB magnitude error at 

the cross-over frequency (10 kHz).  The BZT (prewarping Fc) preserves the tuned 

frequency Fc, however the response suffers from large distortion in the slope.  The BZT 

(prewarping Fc/Q) successfully preserves the slope, however the Fc pre-warping appears 

ineffective, generating a 1.5 dB error at the tuned frequency. 

Figure 3-6 shows the response distortion for various BZT schemes realising a 10 kHz, 

Butterworth LPF.  None of the schemes managed to preserve the slope in the response, 

due to the band-limiting nature of the BZT approaching the Nyquist frequency.  The BZT 

using no prewarping produces a 1.5 dB magnitude error at the cross-over frequency (10 

kHz).  The BZT (prewarping Fc) preserves the tuned frequency Fc.  The BZT (prewarping 

Fc/Q) does not preserve the slope or the tuned frequency, Fc.  The importance of slope 

distortion for low and high pass filters is complex.  An increase in slope (Q) is a form of 

response distortion, however in some applications the increase in slope can be beneficial. 

A fourth order LPF and HPF Linkwitz-Riley response uses two cascaded second order 

Butterworth functions tuned to the same frequency (Linkwitz, 1976).  One of the most 

important features of the Linkwitz-Riley filter is that the summed response of the LPF and 

HPF is flat.  The BZT (using no prewarping) produces LPF and HPF that sum to a flat 

response, despite the large error at the tuned frequency.  The BZT (prewarping Fc) method 

also produces LPF and HPF that provide a flat summed response.  This is because the 

BZT warping effects for the LPF and HPF response are symmetrical across the frequency 

axis.  However the BZT (prewarping Fc/Q) produces a non symmetrical frequency 
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response distortion between the LPF and HPF filters.  This results in the summed response 

not being flat, Figure 3-7, the summed response is -2.7 dB for a tuned frequency of 10 

kHz. 
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Figure 3-5 Magnitude response comparisons, high pass filter, Fc=10 kHz, Butterworth response, 
Fs=48 kHz.  
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Figure 3-6 Magnitude response comparisons, low pass filter, Fc=10 kHz, Butterworth response, Fs=48 
kHz. 
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Figure 3-7 Summed magnitude response low and high pass Linkwitz-Riley alignment. BZT based 
filters using prewarping for Fc and Q. Fc=10 kHz, Fs=48 kHz.  

 

3.2.3 Bell filters 
 
A variety of techniques for minimising warping effects for the bell filter are available 

(Moorer, 1983; White, 1985; Shpak, 1992; Bristow-Johnson, 1994; Orfanidis, 1996).  Pre-

warping schemes that preserve Fc and either the –3dB lower, upper band-edge frequency 

or the bandwidth (BW) are developed by Shpak (1992).  In (Moorer, 1983; Bristow-

Johnson, 1994) BZT techniques that preserve Fc and half-gain BW are described.  In 

Orfanidis (1996) a scheme that pre-warps Fc, BW and preserves the gain at the Nyquist 

frequency is developed.  Figure 3-8 shows an interesting comparison of the Fc/half-gain 

BW pre-warping (Moorer, 1983; Bristow-Johnson, 1994) and the Fc/-3dB BW/gain at 

Nyquist frequency preservation, described in (Orfanidis, 1996).  Note that both bandwidth 

preservation techniques compromise the rising slope magnitude considerably, whilst 

attempting to preserve the bandwidth.  The Fc/half-gain BW pre-warping (Moorer, 1983; 

Bristow-Johnson, 1994) heavily compromises the rising slope characteristics to preserve 

the wider half-gain BW.  The Fc/BW/Nyquist gain preservation technique (Orfanidis, 

1996) causes less distortion on the rising slope, since only the –3dB bandwidth is being 
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preserved.  Furthermore the falling slope is less distorted owing to the Nyquist gain 

preservation.  Figure 3-9 compares the Fc and lower band-edge pre-warping scheme 

(Shpak, 1992) with the Fc/Q pre-warping scheme (Clark et al, 1996).  The magnitude 

responses are similar. 
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Figure 3-8 Magnitude response comparisons, bell filter, Fc=15 kHz, Q=2, boost gain=15 dB, Fs=48 
kHz. 
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Figure 3-9 Magnitude response comparisons, bell filter, Fc=15 kHz, Q=2, boost gain=15 dB, Fs=48 
kHz.  
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3.3 Frequency response distortion in MZT based filters 
 
High pass and low pass filter functions are typically difficult to design using the MZT 

(Temes and Mitra, 1973), (Rabiner and Gold, 1975).  Guard filters introducing additional 

zeros are typically required to produce a response that is similar to the s-plane prototype 

response. Therefore the MZT for low and high pass filter design is not considered in this 

work. 

Direct application of the MZT typically produces gain-shifts (offsets) in the magnitude 

frequency response.  In this section simple offset scaling methods are developed to correct 

the offsets in the magnitude frequency responses for the LF shelf, HF shelf and bell filters. 

Figure 3-10 shows a typical offset in the magnitude frequency response caused by the 

MZT in the LF shelving filter.  This offset in the response can be simply corrected since 

the required gain at zero Hertz (dc) is known for all of the filter types.  The bell and HF 

shelving filters both require unity gain at dc.  In this case the offset can be corrected by the 

application of a scaling factor to the zeros (numerator) of the z-plane filter, to normalise 

the dc response to unity gain.  The LF shelving filter requires a further stage of scaling 

since the gain at dc is user defined.  Therefore a further gain factor needs then to be 

applied, in addition to the normalisation scale factor. 
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Figure 3-10 Magnitude response comparisons, LF shelving filter, Fc=2 kHz, boost gain=15 dB, Fs=48 
kHz. 

 

3.3.1 LF shelving filter 
 
Critically damped, second order, LF Shelves, Equation (2-2) can be factored into perfect 

squares, to give real roots.  Using Equation (2-9) we obtain the equivalent z-plane transfer 

function, given in Equation (3-2).  Steeper slope, under-damped, shelving functions 

produce complex conjugate roots and require the complex mapping, Equation (2-10). 

  

         (3-2) 

 
The z-plane transfer function, given in Equation (3-2) is not scaled for offset correction.  

The normalisation scaling factor can be calculated by substituting z = 1 into Equation (3-

2).  Furthermore, the additional scaling required to achieve the user defined dc gain is 

simply (A/B)2.  This results in the total scaling factor given in Equation (3-3).  The offset 

corrected magnitude response is shown in Figure 3-1. 
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         (3-3) 

 

3.3.2 HF shelving filter 
 
The critically damped HF shelving filter can use the real roots mapping, given in Equation 

(2-9).  Variable Q (slope) shelving functions need to exploit the complex mapping, 

Equation (2-10).  Applying the real roots mapping of Equation (2-9) to the factored form, 

Equation (3-4), gives the discrete-time transfer function given in Equation (3-5).  The HF 

shelving filter offset scaling (dc normalisation), Equation (3-6), is shown as a numerator 

scaling factor of the discrete-time transfer function, Equation (3-5).  The offset corrected 

magnitude and resulting phase response are shown in Figure 3-3 and Figure 3-4. 
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scaling factor, Scalebell , Equation (3-9), is used to normalise the offset in the response, as a 

numerator scaling factor in Equation (3-8).  Figure 3-11 and Figure 3-12 show the 

magnitude and phase response of the resulting offset corrected bell filter. 
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Figure 3-11 Magnitude response comparisons, bell filter, Fc=15 kHz, Q=2, boost gain=15 dB, Fs=48 
kHz. 
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Figure 3-12 Phase response comparisons, bell filter, Fc=15 kHz, Q=2, boost gain=15 dB, Fs=48 kHz. 

 

3.4 Comparison of existing transforms and techniques 

3.4.1 LF and HF shelving filter response distortion 
 
MZT offset scaling schemes have been developed to ensure the HF shelving and bell 

functions are unity gain at dc or the user prescribed gain at dc for the LF shelving filter.  
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For nominal frequency settings, the LF shelving filter suffers minimal response distortion 

through either the BZT or MZT.  For a worse case scenario, for example Fc equal to two 

kHz, some response distortion is evident, Figure 3-1, and is worst using the BZT.  HF 

shelving functions, using the BZT, do incur considerable response distortion in the slope 

of the magnitude frequency response.  The MZT, using offset scaling, produces acceptably 

low amounts of response distortion for both the LF and HF shelving filters, Figure 3-1 to 

Figure 3-4.  For this reason, techniques to improve the MZT response distortion for the LF 

and HF shelving filters, at the sampling frequency of 48 kHz, are not considered any 

further in this work. 

 

3.4.2 BZT-based bell filter response distortion 
 
BZT bell filter pre-warping techniques have been reviewed.  The BZT bandwidth pre-

warping techniques generally perform well, but at high frequency, lower Q settings, 

bandwidth preservation affects the response of the rising edge of the slope, Figure 3-8.  

The Fc/lower band-edge pre-warping scheme provides low response distortion and 

produces a similar response to the Fc/Q pre-warping scheme.  However, both schemes 

suffer response distortion on the falling edge of the slope, Figure 3-9.  The Fc/Q pre-

warping scheme incurs less computational load than the lower band-edge pre-warping 

technique (Shpak, 1992).  The latter requires additional trigonometric functions.  The 

preservation of gain at the Nyquist frequency scheme (Orfanidis, 1996) resolves the 

response distortion on the falling edge of the response, Figure 3-8.  However, the Nyquist 

frequency gain and bandwidth preservation scheme does incur large amounts of 

computational load and rising edge response distortion.  Analysis of the z-plane pole and 

zero placements produced by the BZT, Figure 3-13, shows that, for real root solutions, the 

BZT has a pronounced zero at Nyquist (a pronounced pole for cut filters).  This 

accentuates the decay in the falling slope of magnitude frequency response towards the 
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Nyquist frequency, Figure 3-8, Figure 3-9 and Figure 3-11.  The presence of ‘strong’ poles 

and zeros in the z-plane increases the slope (and Q factor) of the filters magnitude 

frequency response. 
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Figure 3-13 Z-plane pole/zero positions, bell filter, Fc=15 kHz, Q=2, boost gain=15 dB, Fs=48 kHz. 

 

3.4.3 MZT-based bell filter response distortion 
 
The offset scaling correction technique has been shown to improve the response distortion 

of the MZT bell to the extent that the MZT is useable.  However at high frequencies and 

low to mid Q settings, the MZT tends to incur noticeable image distortion, approaching 

the Nyquist frequency, Figure 3-11. The image distortion can be characterised as a peak 

gain overshoot in the magnitude response.  This is potentially a dangerous response 

distortion since excessive gain may result in overload clipping of the audio signal.  

Inspection of the MZT pole zero diagram, Figure 3-13, explains some common 

characteristics of the MZT.  The real zero, in this example, is not placed at or towards 

Nyquist, but is positioned close to the origin on the dc axis and is therefore virtually 
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redundant and does not contribute to the overall response.  For this reason this is referred 

to as the ‘lazy’ zero, Figure 3-13.  Note, for the cut case filter the MZT would produce a 

‘lazy’ pole. 

3.5 Techniques to improve bell response distortion 

3.5.1 Coefficient averaging 
 
It is evident from Figure 3-11 that the MZT (using offset scaling) and BZT (using Fc/Q 

pre-warping) generate opposing response distortion towards the Nyquist frequency.  

Averaging the BZT and MZT coefficient sets, as shown in Equation (3-10), produces a 

resultant filter with a magnitude response that is the average of the BZT and MZT filters.  

Furthermore the resultant filter’s magnitude response renders a good fit to the ideal 

response.  Analysis of some real root pole zero placements produced by the averaged 

BZT/MZT shows that the MZT generated ‘lazy’ zero at dc and the BZT generated ‘strong’ 

zero at the Nyquist frequency are averaged to produce a ‘moderately’ positioned zero at 

the Nyquist frequency.  The averaged zero placement is half way between the two zeros, 

along the dc-Nyquist axis.  This has the effect of reducing the excessive peak gain caused 

by the MZT and the increased slope on the falling edge caused by the BZT.  Figure 3-14 

shows the resulting magnitude response for a bell filter using a BZT/MZT averaged 

coefficient set, which can be seen to be close to the ideal response.  However the 

coefficient averaging technique has some side effects.  In some cases the averaged 

response is worse than the individual BZT or MZT  responses.  At higher centre frequency 

settings, towards 20 kHz, the excessive peak gain overshoot of the MZT produces a peak 

gain overshoot in the averaged response.  Excessive gain, as stated in Section 3.4.3, is not 

a desirable effect.  At mid to high centre frequency settings, in the region of 8 kHz, the 

accentuated falling slope characteristic of the BZT is visible in the averaged response. 
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         (3-10) 
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Figure 3-14 Magnitude response comparisons, bell filter, Fc=15 kHz, Q=2, boost gain=15 dB, Fs=48 
kHz. 

 

3.5.2 Root shifted MZT 
 
Shifting the MZT generated ‘lazy’ zero from dc to a moderate position in the Nyquist 

frequency region of the dc - Nyquist axis combats the excessive peak gain problem, 

inherent in the MZT.  For a boost gain setting the ‘lazy’ numerator root (zero) will be 

shifted onto the Nyquist section of the axis.  For the cut case, the ‘lazy’ denominator root 

(pole) needs to be shifted onto the Nyquist section of the axis.  The mechanism to shift the 

root is simple for the real roots case.  The bell transfer function of Equation (3-8) can be 

rewritten assuming real unequal zero’s, obtaining Equation (3-11).  It is clear from 

Equation (3-11) that the ‘lazy’ root can be effectively shifted across the dc - Nyquist axis 
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by manipulating the variable ‘zshift’.  If ‘zshift’ is negative the ‘lazy’ zero at dc can be 

shifted across to the Nyquist region of the axis.  The magnitude of ‘zshift’ determines the 

position on the axis.  The zero requiring the shift is the root solution found from Equation 

(3-12).  The transfer function in Equation (3-11) has to be scaled to combat the usual 

offset as previously described in Section 3.3.  

 

         (3-11) 

         (3-12) 

 
A closed form expression for ‘zshift’ can be realised, where Fc, Q and G are known.  

Variable ‘zshift’ can be solved taken that, Equation (3-11), once offset corrected, should 

equal the prescribed user gain G, at the peak frequency Fc.  Figure 3-15 shows the 

resulting response distortion for a real roots shifted MZT example.  The excessive peak 

gain overshoot has been corrected.  However slight response distortion is visible on the 

rising edge slope.  Although the closed form solution for ‘zshift’ will always produce a 

peak gain equal to G, the rest of the response can be compromised at extreme settings 

(typically as Fc approaches Nyquist frequency and at low Q settings). 

If the discrete roots are complex then the zero and pole shifting principle has to apply a 

shifting factor to the complex conjugate pair, Equation (3-13).  Various shifting principles 

have been tried, with the aim of reducing the image response distortion approaching the 

Nyquist frequency.  Simply applying a single shifting parameter to the modulus of the 

conjugate pair does not solve the peak gain overshoot image response distortion 

effectively.  Another shifting principle, which did reduce the peak gain overshoot in some 
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isolated cases, required shifting the modulus r, and the phase angle θ by a shifting factor, 

‘zs’, Equations (3-14) and (3-15).  No generic shifting principle was found for complex 

roots.  Complex root shifting methods tended to produce response distortion at particular 

root positions, produce non-conjugate roots or did not produce a closed form solution for 

the shifting factor. 

 

         (3-13) 
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Figure 3-15 Magnitude response comparisons, bell filter, Fc=15 kHz, Q=2, boost gain=15 dB, Fs=48 
kHz. 
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3.5.3 Peak gain pre-warping for MZT 
 
In this work another technique is developed, a peak gain pre-warping, to counteract the 

excessive peak gain error inherent in the MZT.  This is essentially a first order, peak gain 

error correction process.  The actual peak gain of the basic MZT response can be obtained 

by substituting z, Equation (3-16), into the discrete-time transfer function, Equation (3-8).  

The peak gain error, Equation (3-17) is the difference between the actual peak gain and the 

desired peak gain, G.  The peak gain error is then subtracted from the desired gain to form 

a pre-warped gain, see Equation (3-18).  This pre-warped gain is then applied back into 

the MZT, providing a first order, peak gain error corrected response.  The resulting 

response is free from peak gain overshoot, but typically suffers slope distortion, as shown 

in Figure 3-16.  This is a generic solution, applicable to any given bell filter.  This 

technique is thus preferred to the shifting process, Section 3.5.2, which only works for real 

root solutions.  However the computational load is high since two implementations of the 

MZT mapping and offset scaling scheme are required. 
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         (3-17) 
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Figure 3-16 Magnitude response comparisons, bell filter, Fc=15 kHz, Q=2, boost gain=15 dB, Fs=48 
kHz. 

 

3.6 Assessment of frequency response distortion 
 
Frequency response error curves, displaying the response differences (magnitude or phase) 

between the ideal s-plane response and that of a discrete-time filter, provide a useful way 

to compare transform schemes.  Figure 3-17 shows the magnitude response errors for the 

BZT, MZT (offset scaled), averaged BZT/MZT and MZT (with peak gain pre-warping), 

for a bell filter, with Fc=15 kHz, Q=2, G=15 dB.  The MZT peak frequency gain error 

(overshoot) is shown to be nearly 2 dB.  The average BZT/MZT technique offers the 

lowest magnitude error, but does have some overshoot at the peak gain frequency.  The 

MZT (with peak gain pre-warping) has no peak gain overshoot but displays some response 

error in the mid frequency range (less than 1dB error).  Figure 3-18 depicts the magnitude 

error curve for a more typical filter setting, with the peak gain at 6 kHz.  The MZT has 

approximately 0.25 dB overshoot at peak gain whereas the MZT (with peak gain pre-

warping) has zero peak gain error.  The BZT and averaged BZT/MZT incur more error on 

the falling slopes, which increases towards the Nyquist frequency. 
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The phase response distortion of the MZT and BZT methods with respect to the s-plane 

‘ideal’ phase response can be effectively shown through a group delay error curve.  That is 

the deviation in group delay of the MZT or BZT generated responses from the s-plane 

‘ideal’ group delay response.  The MZT and MZT (with peak gain pre-warping) produce 

extremely similar phase/group delay responses and for clarity only one ‘MZT’ plot is 

shown in Figure 3-19.  It is clear from Figure 3-19, that the MZT phase error is linear, 

producing a flat group delay error.  Whereas the BZT group delay error is smaller, but is a 

highly non-linear phase error (not a flat group delay error) from the ideal s-plane response. 
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Figure 3-17 Magnitude response error comparisons, bell filter, Fc=15 kHz, Q=2, boost gain=15 dB, 
Fs=48 kHz. 
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Figure 3-18 Magnitude response error comparison, bell filter, Fc=6 kHz, Q=2, boost gain=15 dB, 
Fs=48 kHz. 
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Figure 3-19 Group delay response error comparison, bell filter, Fc=6 kHz, Q=2, boost gain=15 dB, 
Fs=48 kHz. 

3.7 Stability analysis and noise comparisons of target filters 
 
For real and complex roots, the BZT pole positions are typically closer to the unit circle 

than the MZT pole positions, for high frequency tuned filters.  The BZT typically places a 
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pronounced real root at the Nyquist frequency or a pair of ‘strong’ complex conjugate 

roots towards Nyquist.  These roots are zeros for the boost gain case and poles for the cut 

gain case.  Nevertheless, these pronounced ‘strong’ roots force the other roots in the 

system to be closer to the unit circle, as shown in Figure 3-13.  As established, the MZT 

based methods do not produce the same pronounced ‘strong’ zero or pole at or towards the 

Nyquist frequency.  Consequently, for high frequency tuned filters MZT pole positions are 

not as close to the unit circle as the BZT pole positions.  These changes in pole positions 

have some bearing on the finite wordlength performance of the resulting filters.  It should 

be noted that for the constant-Q boost case filter, the pole positions are not dependent on 

the amount of gain.  Therefore the MZT and MZT (with peak gain pre-warping) produce 

the same pole positions for all boost settings (including the unity gain 0 dB setting). 

3.7.1 Resilience to forced overflow oscillation 
 
Pole positions and their susceptibility to forced overflow problems can be visualised 

through a stability triangle (Dattorro, 1988; Samueli and Willson, 1983).  Low frequency 

tuned filters using the MZT and BZT produce identical pole positions and are both 

susceptible to forced overflow oscillations, producing pole positions in the lower right 

hand corner of the triangle.  However, interesting stability triangle differences exist for 

high frequency tuned filters.  Figure 3-20 shows BZT and MZT stability triangle pole 

positions, for a one third octave bell filter, Q=4.35, G=3 dB Fc=19 kHz.  It is clear from 

Figure 3-20 that the BZT produces poles which are within the region where forced 

overflow oscillations can occur (inside the lower left hand side region).  The MZT pole 

positions, for the same setting, are such that forced overflow oscillations are not possible.  

For all boost gain settings and the unity gain ‘flat’ case, it can be shown that for high 

frequency peak gain and Q, the BZT pole positions are always closer to the forced 

overflow oscillation region than the MZT pole positions.  This suggests that for high 
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frequency tuned, high Q settings BZT based filters can be more susceptible to forced 

overflow oscillations than MZT based designs.  This is true for all boost settings, 

including low gain filters and the unity gain case. 
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Figure 3-20 Stability triangle, bell filter, Fc = 19 kHz, Q=4.35 (1/3octave). Lower corners are regions 
of forced overflow oscillation, Fs=48 kHz. 

 

3.7.2 Noise performance 
 
For some filter topologies the pole transfer function is solely responsible for the overall 

noise gain, (Dattorro, 1988; Wilson, 1993; Clark et al, 1996).  Figure 3-21 shows the pole 

magnitude responses for a MZT and BZT derived bell filter, Fc of 19 kHz, one third 

octave (Q=4.35).  The pole responses are the same for all boost settings (including the 0 

dB unity gain case).  It should be noted that the BZT pole response produces nearly 4 dB 

of additional peak gain than the MZT pole response.  The pole responses for the same 

filter in the cut case also show that the BZT produces more noise gain towards Nyquist 

than the MZT techniques.  It is suggested that distortion and noise measurements of a BZT 

based high frequency tuned filter could be marginally worse than the MZT based filter, 

even for the unity gain ‘flat’ setting. 

BZT
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Figure 3-21 Pole transfer function comparisons, bell Filter, Fc=19 kHz, Q=4.35 (1/3octave), boost gain 
and unity gain (flat) case, Fs=48 kHz 

 

3.8 Effects of higher sampling frequencies on response 
distortion 

 
The emergence of higher system sampling frequencies, 96 and 192 kHz, is a testimony to 

the importance of imperfections in transient and frequency response up to and above 20 

kHz.  However, the tuned frequencies of analogue equalisers do not typically exceed 20 

kHz.  Consequently, the use of a higher sampling frequency reduces response distortion 

since the Nyquist frequency is well beyond the range of the tuned frequencies in the filter.  

The impact of the higher sampling rates on response distortions for the various coefficient 

generation techniques needs to be evaluated.  This will establish whether the 

computational overhead of the various pre-warping schemes can be justified at higher 

sampling frequencies. 

One obvious computational saving in the MZT method is the removal of the offset scaling 

correction.  However, this is not feasible since the offset at higher sampling frequencies is 

still significant.  At a sampling frequency of 192 kHz the offset for a bell filter (Fc=15 
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kHz, Q=2, 15 dB boost) is an unacceptable 3 dB.  Computational savings, which result in 

acceptable response distortion, can be made through the omission of the BZT pre-warping 

step, omitting Equations (2-8) and (3-1) in the BZT mapping.  These effects are filter type 

and sampling frequency dependent and are discussed in the following sections. 

 

3.8.1 High pass filter response distortion at 96 and 192 kHz 
 
Figure 3-22 shows the response distortion errors for a Butterworth response HPF tuned to 

10 kHz, using the various BZT techniques, operating at a sampling frequency of 96 kHz. 

For the BZT (using no pre-warping) the maximum error is at the tuned frequency and is 

shown to be approximately 0.3 dB.  The BZT (prewarping Fc) produces a maximum slope 

distortion of approximately 0.6 dB.  The BZT (prewarping Fc/Q) produces a maximum 

error at the tuned frequency of approximately 0.4 dB. 

Figure 3-24 shows the response distortion errors for a Butterworth response HPF tuned to 

10 kHz, using the various BZT techniques, operating at a sampling frequency of 192 kHz. 

For the BZT using no pre-warping the maximum error is at the tuned frequency and is 

shown to be less than 0.1 dB.  The BZT (prewarping Fc) produces a maximum slope 

distortion of approximately 0.16 dB.  The BZT (prewarping Fc/Q) produces a maximum 

error at the tuned frequency of less than 0.09 dB. 
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Figure 3-22 Magnitude response error comparison, high pass filter, Fc=10 kHz, Fs=96 kHz. 
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Figure 3-23 Magnitude response error comparison, high pass filter, Fc=10 kHz, Fs=192 kHz. 

 

3.8.2 Low pass filter response distortion at 96 and 192 kHz 
 
Figure 3-24 shows the response distortion errors for a Butterworth response LPF tuned to 

10 kHz, using the various BZT techniques, operating at a sampling frequency of 96 kHz. 

For the BZT (using no pre-warping) produces a noticeable increase in slope roll-off and is 
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approaching 3 dB error at 20 kHz.  The error at the tuned frequency (10 kHz) is 

approximately 0.3 dB.  The BZT (prewarping Fc) produces a slope distortion of 

approximately 2 dB at 20 kHz.  The BZT (prewarping Fc/Q) produces a maximum error at 

the tuned frequency of approximately 0.3 dB. 

Figure 3-25 shows the response distortion errors for a Butterworth response LPF tuned to 

10 kHz, using the various BZT techniques, operating at a sampling frequency of 192 kHz. 

All three schemes produce considerably less slope roll-off distortion, approximately 0.5 

dB error at 20 kHz.  The BZT (prewarping Fc) and BZT (prewarping Fc/Q) produce a 

maximum error at the tuned frequency of less than 0.1 dB. 
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Figure 3-24 Magnitude response error comparison, low pass filter, Fc=10 kHz, Fs=96 kHz. 
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Figure 3-25 Magnitude response error comparison, low pass filter, Fc=10 kHz, Fs=192 kHz. 

 

3.8.3 LF shelving filters response distortion at 96 and 192 kHz 
 
It is suggested in Section 3.4.1 that the BZT (pre-warping Fc) and the MZT (with offset 

scaling), produce acceptable response distortion for worst case settings, at a sampling 

frequency of 48 kHz.  It has also been found that the BZT, at a sampling frequency of 48 

kHz, does not need pre-warping for typical settings (Fc is less than 1 kHz).  Figure 3-26 

shows the magnitude response error for a LF shelving filter (Fc of 2 kHz) using the BZT 

(with no pre-warping) and the MZT (with offset scaling) at a sampling frequency of 96 

kHz.  The MZT magnitude error at 20 kHz is less than 0.02 dB.  The BZT magnitude error 

is less than 0.4 dB at 20 kHz.  Figure 3-27 shows the magnitude response error for a LF 

shelving filter (Fc of 2 kHz) using the BZT (with no pre-warping) and the MZT (with 

offset scaling), at a sampling frequency of 192 kHz.  The MZT magnitude error at 20 kHz 

is approximately 0.002 dB.  The BZT magnitude error is less than 0.1dB at 20 kHz. 

It is clear that, at the higher sampling frequencies, the MZT (with offset scaling) still 

produces much less response distortion than the BZT (with no pre-warping).  However the 
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magnitude response errors for the BZT (using no pre-warping) at 96 kHz and 192 kHz are 

almost negligible. 
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Figure 3-26 Magnitude response error comparison, LF shelving filter, Fc=2 kHz, boost gain=15 dB, 
Fs=96 kHz 
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Figure 3-27 Magnitude response error comparison, LF shelving filter, Fc=2 kHz, boost gain=15 dB, 
Fs=192 kHz 

 

3.8.4 HF shelving filters response distortion at 96 and 192 kHz 
 
MZT HF shelving filter response distortion is minimal at a sampling rate of 48 kHz.  The 

BZT, at a sampling frequency of 48 kHz, produces considerable response distortion, 
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drastically increasing the slope in the magnitude response.  BZT (with no pre-warping) at 

a sampling frequency of 48 kHz incurs further slope distortion.  Figure 3-28 shows the 

magnitude response error for a HF shelving filter (Fc of 12 kHz) using the BZT (with no 

pre-warping) and the MZT (with offset scaling) at a sampling frequency of 96 kHz.  The 

BZT (no pre-warping) produces less than 0.2 dB error.  Figure 3-29 shows the magnitude 

response error for the BZT (no pre-warping) and the MZT at a sampling rate of 192 kHz.  

The BZT (no pre-warping) produces a maximum error of less than 0.05 dB (at 20 kHz).  It 

is also shown that the MZT magnitude response errors, up to 20 kHz, at the sampling 

frequencies of 96 kHz and 192 kHz are extremely low (less than 0.01 dB). 
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Figure 3-28 Magnitude response error comparison, HF shelving filter, Fc=12 kHz, boost gain=15 dB, 
Fs=96 kHz 
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Figure 3-29 Magnitude response error comparison, HF shelving filter, Fc=12 kHz, boost gain=15 dB, 
Fs=192 kHz 

 

3.8.5 Bell filter response distortion at 96 and 192 kHz 
 
Figure 3-30 shows the magnitude response errors, for various schemes, for a bell filter 

(Fc=15 kHz) at a sampling frequency of 96 kHz.  The MZT (with offset scaling), without 

peak gain pre-warping, produces 0.15dB overshoot at the peak gain frequency.  The 

respective magnitude error curve, at a sampling frequency of 48 kHz is shown in Figure 

3-17.  This suggests that the MZT peak gain pre-warping scheme is not required to combat 

peak gain overshoot problems in the bell filter magnitude response, at a sampling 

frequency of 96 kHz. 

Further inspection of Figure 3-30 shows that the BZT (pre-warping Fc/Q) technique 

produces 0.7dB error at 20 kHz.  By omitting Equations (2-8) and (3-1) from the BZT 

mapping, the potential of no pre-warping can be explored.  It can be shown that a system 

sampling frequency of 96 kHz does not alleviate the need for pre-warping Fc/Q in the 

BZT mapping.  The implementation of the 15 kHz bell filter using the BZT (without pre-

warping) results in a peak magnitude frequency of 14 kHz.  Such an error in the peak 
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magnitude frequency is not acceptable.  Furthermore the response also suffers from 

noticeable slope distortion and the magnitude response error at 20 kHz is 2.5 dB. 

Figure 3-31 shows the magnitude response errors for the BZT, BZT (with no pre-warping) 

MZT (with offset scaling), MZT (with peak gain pre-warping) at a sampling frequency of 

192 kHz.  The MZT (with peak gain pre-warping) scheme does not produce a significant 

difference in magnitude error than that of the standard MZT.  The standard MZT 

magnitude error at the peak frequency (15 kHz) is less than 0.01 dB, rendering the error 

negligible.  The BZT (without pre-warping) can also produce acceptable response errors at 

a sampling frequency of 192 kHz.  Implementing the 15 kHz bell filter with the BZT 

(without pre-warping) results in a peak magnitude frequency of 14.75 kHz.  This is 

thought not acceptable. 

The MZT group delay error responses at the higher sampling rates are also fairly flat and 

small in magnitude.  At a sampling frequency of 96 kHz the group delay error for the 6 

kHz bell filter is approximately 50µs.  At 192 kHz the group delay error for the same bell 

filter is approximately 10µs (compared to 180µs at the sampling frequency of 48 kHz).  At 

sampling frequencies of 96 and 192 kHz the BZT (pre-warping Fc/Q) produces a more 

non-linear group delay error, similar in response to the 48 kHz sampling rate results, 

Figure 3-19.  However the magnitude of this group delay error is again small, at a 

sampling frequency of 96 kHz the BZT produces a peak group delay error, at 6.5 kHz, of 

70µs.  At 192 kHz the peak group delay error is 15 µs. 
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Figure 3-30 Magnitude response error comparison, bell filter, Fc=15 kHz, Q=2, boost gain=15 dB, 
Fs=96 kHz  
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Figure 3-31 Magnitude response error comparison, bell filter, Fc=15 kHz, Q=2, boost gain=15 dB, 
Fs=192 kHz 

 
 
 
 
 



                                                                    Chapter 3 Techniques for calculating digital equaliser coefficients 

 79 

3.9 Implementation of techniques in DSP 

3.9.1 Comparisons of computational loads 
 
Both the BZT and MZT techniques require a large operational numerical range and are 

naturally more suited to implementation in floating point arithmetic.  Implementation in 

fixed point arithmetic is feasible through arithmetic scaling or through the use of look-up 

tables to circumvent arithmetic overflow.  However, arithmetic scaling reduces the 

computational accuracy of the resulting coefficients and the use of look-up tables reduces 

parameter resolution (since the number of parameter settings depends on look-up table 

capacity).  There are two implementation platform scenarios, implementation on DSP 

hardware or on a standard microprocessor platform.  Implementation on DSP hardware 

can exploit high order polynomials to approximate functions since DSP processors are 

efficient at multiplication.  Furthermore a ratio of polynomials can also be used for 

approximations, since efficient divide iterations (Cavanagh, 1984) are typically achievable 

on DSP platforms.  Many standard microprocessors are not efficient at multiplication.  

The CORDIC algorithm (Volder, 1959) is an efficient and widely adopted technique used 

to implement function approximation on multiplier-less processors.  Cosine/Sine, 

Cosh/Sinh functions are simple to implement.  The Cosh/Sinh CORDIC processor can 

also be used to calculate an exponential.  Tangent functions can be derived from the 

Cosine/Sine by the use of a divide function.  Newton-Raphson’s iteration (Cavanagh, 

1984) is an efficient method to calculate the square-root function. 

Table 3-1 gives a break-down of the computational load of the various key transforms, 

once optimised.  The MZT (with peak gain pre-warping) and the BZT (bandwidth and 

Nyquist gain preserved) clearly require the highest computational load.  It is estimated that 

the computational load of these two techniques is fairly similar.  It is also clear from Table 

3-1 that the BZT (pre-warping Fc/Q) has considerably less computational load than the 
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standard MZT (with offset scaling).  It is clear that the BZT (with no pre-warping) is the 

method requiring least computational load. 

 
Arithmetic 
Function 

BZT 
No pre-warping 

BZT 
Pre-warping 

Fc & Q 

MZT 
Gain shift 
corrected 

MZT 
Peak gain 

pre-warping 

BZT 
BW & Nyquist gain 

preservation 
Multiplication 12 15 17 32 31 
Addition 6 6 6 17 36 
Division 2 2 2 4 6 
Square Root 0 0 2 3 7 
Exponential 0 0 2 4 0 
Cosine/Cosh 0 0 2 3 0 
10X 1 1 1 1 2 
Tangent 0 1 0 0 2 
 
Table 3-1 Computational load comparison of the various coefficient calculation techniques 
 

3.10 Discussion 
 
Magnitude and phase response distortions for BZT and MZT–based filters were examined.  

Offset response distortions in the MZT-based filters have been identified.  Offset 

correction schemes are developed for the LF, HF shelving and bell filters.  Image response 

distortions in the form of excessive peak gain are found in the MZT-based bell filter.  

Correction schemes were developed to improve the MZT bell filter image response 

distortion.  It is shown that pre-warping the peak gain in the MZT results in a relatively 

affordable computational increase and improves the response of the resulting filters.  It is 

also shown that for high frequency tuned filters the stability and noise characteristics of 

the MZT-based filter is superior to that of a BZT-based filter.  This is even true for a flat 

(unity gain) filter. 

Filter response distortions using existing BZT pre-warping techniques operating at a 

sampling frequency of 48 kHz were reviewed.  BZT-based LF shelving filters produce 

negligible response distortion and are computationally efficient.  BZT pre-warping 

techniques produce large amounts of response distortion in HF shelving filters.  

Prewarping Fc and Q is found to be the best BZT technique for the bell filter.  However, 

prewarping Fc is found to be the best BZT technique for LPF and HPF. 
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MZT-based bell, LF and HF shelving filters have been shown to produce less response 

distortion than any of the BZT techniques at the sampling frequencies of 48 kHz, 96 kHz 

and 192 kHz.  However, the response distortions are considerably smaller at the higher 

sampling frequencies.  At sampling frequencies of 96 and 192 kHz, it was found that the 

MZT pre-warped peak gain technique is redundant and the MZT (with offset scaling) is 

sufficient since there is no significant overshoot in the peak gain. At a sampling frequency 

of 96 kHz the BZT (pre-warped Fc/Q) response distortions are extremely small.  At a 

sampling frequency of 192 kHz the BZT (pre-warping Fc/Q) and MZT (with offset 

scaling) response distortions are negligible furthermore the BZT (without pre-warping) 

could be used, reducing the computational load considerably.  However, the bell filter 

response error at a sampling frequency of 96 kHz for the BZT (no pre-warping) is 

considerable. 
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4 Emulation of finite wordlength arithmetic 
 
 
 
 
 
 
 
 
 
 
 

4.1 Introduction 
 
The aim of the work described in this chapter was to develop finite wordlength arithmetic 

functions for use in a filter topology emulation environment.  The emulation environment 

is developed in Mathcad (Mathsoft, 1998).  The work examines the effects of quantisation 

in sign magnitude and twos-complement binary coded data.  Mathcad functions are 

developed to emulate the effects of quantisation in fixed and floating point arithmetic.  

The emulated finite wordlength arithmetic is compared at bit level to IEEE 32 bit (single 

precision) floating point arithmetic and 32 bit fixed point twos-complement arithmetic. 

 

4.2 Quantisation models 
 
As discussed in Chapter 2 Section 2.4, finite wordlength arithmetic produces data 

quantisation errors in filter topologies.  The two forms of quantisation are truncation 

(round to zero) and rounding (round to nearest).  Furthermore there are two binary data 

coding schemes considered in this work, sign magnitude and twos-complement.  

Quantisation error, Qe, can be defined as the difference between the quantised data, Q(x) 

and the unquantised data, x, Equation (4-1). 

 
 
   Qe  =  Q(x) - x 

          (4-1) 
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The truncation of sign magnitude coded data produces a zero biased, bipolar quantisation 

error.  The quantisation error is bipolar because the truncation of sign magnitude data 

always produces a smaller magnitude, irrespective of the sign of the data.  Therefore 

truncating positive data produces a negative quantisation error and truncating negative 

data produces a positive quantisation error.  Sign magnitude truncation can be modelled 

using the floor and ceil functions 1, 2.  If the data is positive then the floor function is used, 

for example, 

floor 10.1( ) 10= . 

If the data is negative then the ceil function is used, for example, 

ceil 10.1( ) 10= . 

In order to perform quantisation at any specified fractional binary point a shifting factor 

has to be applied to the data before and after the floor and ceil functions.  The data is 

shifted such that the target fractional wordlength is to the left of the decimal point.  Then 

application of the floor or ceil function truncates the unwanted data to the right of the 

decimal point.  After the floor and ceil operation, the truncated data is realigned with the 

inverse of the shifting factor.  A Mathcad sign magnitude truncation function is shown in 

Equation (4-2).  Data x, is truncated assuming the data is represented by n, sign magnitude 

coded, fractional binary bits. 

 

smtrc x( ) floor x 2n. 2 n. x 0if

ceil x 2n. 2 n. otherwise  

          (4-2) 

 

                                                            
1 floor(x) returns the greatest integer that is less than or equal to x. 
2 ceil (x) returns the smallest integer that is greater than or equal to x. 
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Twos-complement coding is intrinsically different for positive and negative data 

representations.  Truncated twos-complement coded data becomes smaller in magnitude 

for positive data and larger in magnitude for negative data.  This produces a negative bias, 

unipolar quantisation error.  Twos-complement truncation can simply be modelled through 

the use of the floor function, Equation (4-3). 

 

twosCtrc x( ) floor x 2n. 2 n.
 

          (4-3)  

 
The basic principle of rounding (to the nearest) follows the rule that if the residual 

magnitude below the quantisation binary point is less than or equal to one half of the LSB 

of the quantised wordlength then the data is truncated and the LSB remains unchanged.  If 

the residual magnitude is greater than one half of the LSB of the quantised wordlength 

then one LSB is added to the magnitude of the data.  Rounding can easily be implemented 

by adding a rounding quanta (one half of an LSB at the fractional bit boundary) to the pre-

quantised data and then truncating the result.  The Mathcad functions developed to 

emulate rounding (to the nearest) for twos-complement and sign magnitude coded data are 

given in Equations (4-4) and (4-5) respectively. 

 

twosCrnd x( ) floor x 2 n 1( ) 2n. 2 n.
 

          (4-4) 

 

smrnd x( ) floor x 2 n 1( )( ) 2n. 2 n. x 0if

ceil x 2 n 1( )( ) 2n. 2 n. otherwise  

          (4-5) 

 
Rounding sign magnitude coded data produces a symmetrical quantisation error for 

positive and negative data.  Therefore no statistical bias (dc offset) is introduced into the 
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quantisation error.  However for twos-complement rounding there is one data instance 

(exactly one half the LSB residual magnitude) that generates a different rounding result 

for positive and negative data, and thus introduces a bias in the quantisation error.  This 

bias, caused by one data instance in a population of 2r
 (where r is the number of residual 

bits) is extremely small and is not considered important in this work.  Twos-complement 

convergent rounding (Motorola, 1999) is a technique which eliminates this bias, and 

should be used where any small bias is problematic. 

Equations (4-2), (4-3), (4-4) and (4-5) form the basis of the Mathcad truncation and 

rounding quantiser functions for sign magnitude and twos-complement coded data.  The 

resulting quantisation errors using these rounding and truncation functions, quantising to 

23 fractional bits, for twos-complement and sign magnitude coding are shown in Figure 

4-1 and Figure 4-2.  Note the sign magnitude coded truncation produces the largest noise 

variance and the bipolar error is correlated with the input, Figure 4-1.  The twos-

complement coded data truncation produces a bias (dc offset) in the quantisation error, 

shown in Figure 4-2.  Figures 4-3 and 4-4 show the spectral energy of the quantisation 

error for truncated sign magnitude and twos-complement data coding, respectively.  

Figure 4-3 shows the large odd order harmonic distortion components and the distortion at 

the fundamental frequency (999.023 Hz), attributable to the correlation with the sinusoidal 

input.  The dc energy in the twos-complement truncation error is visible in Figure 4-4. 
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Figure 4-1 Quantisation error from truncation and rounding of sign magnitude fixed point data to 23 
fractional bits, (sinusoidal input, 999.023 Hz, 0dBFS) 
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Figure 4-2 Quantisation error from truncation and rounding of twos-complement fixed point data to 
23 fractional bits, (sinusoidal input, 999.023 Hz, 0dBFS) 
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Figure 4-3 Spectral energy of quantisation error from truncation of sign magnitude fixed point data to 
23 fractional bits, (sinusoidal input, 999.023 Hz, 0dBFS) 
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Figure 4-4 Spectral energy of quantisation error from truncation of twos-complement fixed point data 
to 23 fractional bits, (sinusoidal input, 999.023 Hz, 0dBFS) 

 

4.3 Fixed point model 
 
Figure 4-5 shows a finite wordlength fixed point multiply-accumulate model.  The 

multiplier and multiplicand are fractional n bit words.  These produce a fractional product 

of 2n-1 bits.  If the wordlength used to represent the product is less than (2n-1) bits then a 
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quantisation error is introduced.  If the product is stored as a single precision number or 

used as a source for a further single precision multiplication then the product is quantised 

to n bits.  If the product is used in an accumulation operation it remains at 2n-1 fractional 

bits.  The entire accumulation process remains at 2n-1 fractional bits (ignoring 

accumulator headroom bits).  The accumulator output is quantised to n fractional bits for 

single precision storage or for single precision multiplication.  Equation (4-6) performs the 

multiplication of two ‘n’ bit fractional numbers, x and y, assuming fixed point arithmetic.  

The product is stored as n bits, shown as point p in Figure 4-5.  The multiplication input 

variables x and y are quantised to n bits by a quantiser function - denoted Qm in Equation 

(4-6).  The product is then quantised back to n bits by the same quantiser function, Qm.  

The finite wordlength fixed point model ignores headroom bits, which are typically 

supplied in the accumulator.  Accumulator integer bits are ignored, since all fixed point 

implementations considered in this work rely on modulo wrap-round or do not exceed the 

fractional boundaries of the arithmetic. 
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Figure 4-5  Finite wordlength fixed point multiply-accumulate model 

 
 
  Qm [ Qm(x) . Qm(y) ] 

          (4-6) 

 

4.4 Floating point model 
 
Equation (4-7) describes the floating point representation of a number, A.  The signed 

mantissa, A(man), is scaled by two raised to the power of the signed exponent of A, 
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A(exp).  The product, C, of two floating point numbers A and B is shown in Equation (4-

8).  Floating point accumulation is described by Expressions (4-9) and (4-10). 

 
 

A = A(man) · 2 A(exp) 

          (4-7) 

 
C = A · B = A(man) · B(man) · 2 A(exp) + B(exp) 

          (4-8) 

 
if  A(exp) ≥ B(exp) 

then C = A ± B = [A(man) ± ( B(man) · 2 - (A(exp) - B(exp)) )] · 2 A(exp) 

          (4-9) 

 
if  A(exp) < B(exp) 

then C = A ± B = [B(man) ± ( A(man) · 2 - (B(exp) - A(exp)) )] · 2 B(exp) 

          (4-10) 

 
A floating point number is typically said to be normalised if the mantissa most significant 

fractional bit is a one.  This results in an effective magnitude of between one and two, 

since floating point implementations use a hidden bit, which is conceptually placed to the 

right of the binary point (Analog Devices, 1997; Texas Instruments, 1992).  Normalisation 

involves shifting the mantissa left until the leading bit is the MSB (the mantissa magnitude 

is between one and two).  The number of mantissa shifts is subtracted from the exponent 

to compensate for the mantissa shifting.  Numerical data in Mathcad is manipulated in 

decimal representation, not with a separate mantissa and exponent.  In order to perform 

floating point finite wordlength arithmetic, functions were developed to extract a 

normalised mantissa and exponent from the nominal Mathcad decimal representation.  

Therefore the normalisation principle is used to extract the exponent from a decimal 



        Chapter 4 Emulation of finite wordlength arithmetic 

 90 

number.  Equation (4-11) is a Mathcad function ‘flnorm’ that extracts the exponent from a 

decimal number. 

 
flnorm x( ) a x

0return a 0if

i 0

a a 2.

i i 1

ireturn a 1if

a 1<while

a a 0.5.

i i 1

ireturn a 2<if

a 2while

ireturn  

          (4-11) 

 
Once the exponent, exp, is known the normalised mantissa can be realised by simply 

scaling the decimal representation by 2-exp.  It is more efficient in Mathcad to pass 

variables between arithmetic operations in decimal representation.  Therefore mantissa 

and exponents are extracted from decimal data when required for arithmetic operations.  

Floating point quantisers can be completely emulated in decimal form, increasing 

efficiency.  Fractional quantisation of floating point data is governed by the finite 

wordlength of a normalised mantissa.  Numerically equivalent quantisation can be 

performed on a decimal number if an ‘equivalent quantisation boundary’ is determined.  

The ‘equivalent quantisation boundary’ of a decimal number is the number of fractional 

bits in the target mantissa wordlength summed with the extracted exponent, assuming a 

normalised mantissa.  An example floating point quantiser function, performing twos-

complement truncation on a decimal number, is given in Equation (4-12).  The function 

extracts the exponent and adds this to the specified fractional boundary (target mantissa 

wordlength), ‘n’.  This is the equivalent quantisation boundary of the decimal number and 
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produces the same quantisation error in the data as for the specified floating point format.  

The floor function is then used to perform twos-complement truncation at the equivalent 

quantisation boundary.  A sign magnitude rounding quantiser could be implemented by 

replacing the floor function with Expression (4-5).  The complete set of floating point 

quantisers is given in Appendix A. 

 
fl2ctrc x n,( ) a x

i 0

xreturn x 0if

a a 2.

i i 1

a 1<while

a a 0.5.

i i 1

a 2while

floor x 2 n i( ). 2 n i( ).return  

          (4-12) 

 
Resulting quantisation errors operating on a sinusoid signal at 999.023 Hz, using the twos-

complement and sign magnitude rounding and truncation quantiser functions are shown in 

Figure 4-6 and Figure 4-7. Figure 4-8 shows the spectral energy of the quantisation error 

for sign magnitude truncated data.  The strong correlation with the input signal is evident 

as distortion at the fundamental frequency (999.023 Hz).  Figure 4-9 shows the spectral 

energy of twos-complement truncated data.  Even order distortion (second, forth and sixth) 

components are noticeable. 
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Figure 4-6 Quantisation error from truncation of sign magnitude floating point data to 23 fractional 
bits in the mantissa,  (sinusoidal input, 999.023 Hz, 0dBFS) 
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Figure 4-7 Quantisation error from truncation of twos-complement floating point data to 23 fractional 
bits, in the mantissa, (sinusoidal input, 999.023 Hz, 0dBFS) 
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Figure 4-8 Spectral energy of quantisation error from truncation of sign magnitude floating point 
data to 23 fractional bits in the mantissa, (sinusoidal input, 999.023 Hz, 0dBFS) 

 
 

1 10 100 1 .103 1 .104 1 .105
200

190

180

170

160

150

140

130

120

110

100

Truncation, twos-complement data
frequency, Hz

m
ag

ni
tu

de
, d

B
FS

 
Figure 4-9 Spectral energy of quantisation error from truncation of twos-complement floating point 
data to 23 fractional bits in the mantissa, (sinusoidal input, 999.023 Hz, 0dBFS) 

 

4.4.1 Floating point multiplication model 
 
Floating point multiplication is defined in Expression (4-8).  The exponents are summed 

and the mantissas are directly multiplied together.  The mantissas do not strictly need to be 
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normalised, although it is very likely the data is already normalised.  The product may 

need re-normalising and is as a matter of course.  This may incur quantisation.  An 

example floating point multiplier is given in Expression (4-13).  The flnorm function, 

Expression (4-11), is used to extract the two exponents of the numbers, a and b.  The 

normalised mantissas are derived from their exponents.  The mantissas are then multiplied 

together and quantised at the specified product wordlength (floatextprec).  This is 

equivalent to any potential re-normalisation quantisation.  The product mantissa is then 

scaled by the exponent, forming a decimal number.  Floating point multiplier functions for 

sign magnitude and twos-complement rounding and truncation are given in Appendix A. 

 
Multsmtrc a b,( ) aexp flnorm a( )

bexp flnorm b( )

cexp aexp bexp

amant a 2 aexp.

bmant b 2 bexp.

cmant amant bmant.

flsmtrc cmant floatextprec,( ) 2cexp.return  

          (4-13) 

 

4.4.2 Floating point addition model 
 
Floating point accumulation is defined in Expressions (4-9) and (4-10).  Mathcad 

Expression (4-14) is an example of a floating point addition function, using sign 

magnitude binary coding and using rounding as a quantiser.  The exponents of the two 

source numbers to the accumulator are calculated.  The largest exponent is used as the 

result exponent, termed ‘cexp’ in Expression (4-14).  The mantissas for the two data 

sources are generated and quantised at the specified extended precision.  The source data 

with the smaller exponent, has its mantissa aligned to compensate for the result exponent.  

Alignment of the mantissa (shift right) should potentially produce quantisation, however 
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all floating point implementations eliminate this quantisation source through the use of 

two extra precision bits, typically referred to as the guard and ‘sticky’ bits.  The two 

mantissas are then summed and the accumulator result is re-normalised (quantised) by a 

relevant quantisation function at the specified extended precision.  The result is then 

scaled by the result exponent producing a decimal number.  The other floating point 

accumulator operations are given in Appendix A. 

 
Addsmrnd a b,( ) aexp flnorm a( )

bexp flnorm b( )

cexp aexp aexp bexp>if

cexp bexp otherwise

amant flsmrnd a 2 aexp. floatextprec,

bmant flsmrnd b 2 bexp. floatextprec,

result bmant amant 2 bexp aexp( ). aexp bexp<if

result amant bmant 2 aexp bexp( ). otherwise

out flsmrnd result floatextprec,( )

out 2cexp.return
 

 
          (4-14) 

 

4.5 Testing finite wordlength arithmetic operations 
 
The accuracy and operation of the finite wordlength arithmetic quantisation functions was 

compared with arithmetic operations implemented on an industry standard DSP platform 

(Analog Devices, 1997).  The DSP platform implements IEEE 32 bit (40 bit extended 

precision) floating point and 32 bit twos-complement fixed point arithmetic.  Mathcad 

arithmetic and quantisation functions for sign magnitude floating point and twos-

complement fixed point were compared, at bit level, with arithmetic on the DSP platform.  

The operations implemented on the DSP platform were chosen to be 32 bit single 

precision (24 bit mantissa plus 8 bit exponent).  The floating point arithmetic operations in 

the Mathcad environment were configured to 23 fractional bits.  The test data chosen 
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therefore reflected this and exercised the wordlength boundary, 2-23 and 2-24.  The test data 

used, Mathcad test scripts, DSP program and resulting test data is shown in Appendix A. 

  

4.6 Summary 
 
Quantisation behaviour of sign magnitude and twos-complement binary coded data has 

been examined.  This led to the specification of quantisation functions for truncation and 

rounding under twos-complement and sign magnitude coded data.  Floating point 

arithmetic operations such as addition, multiplication and normalisation were analysed.  

Mathcad functions are developed that emulate the quantisation effects of finite wordlength 

fixed and floating point arithmetic operations.  The emulated finite wordlength arithmetic 

is found to be ‘bit exact’ in comparison with a IEEE 32 bit floating point and 32 bit twos-

complement fixed point DSP platform. 

These functions will facilitate the implementation of various filter topologies under 

various finite wordlength constraints in the Mathcad environment.  The emulation of finite 

wordlength filter topologies in the time domain provides a method of topology 

comparison using fixed and floating point arithmetic with different forms of input stimuli.  

This work is described in Chapter 5.  These functions will also facilitate the 

implementation of various coefficient interpolators under finite wordlength constraints.  

Coefficient interpolator behaviour under finite wordlength constraints and the associated 

effects on the audio signal is investigated in Chapter 6. 
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5 Topology behaviour in finite wordlength arithmetic 
 
 
 
 
 
 
 
 
 
 
 

5.1 Introduction 
 
The behaviour of static frequency response filter topologies under various forms of finite 

wordlength arithmetic are investigated in this chapter.  Using finite wordlength arithmetic 

functions, described in Chapter 4, a finite wordlength filter topology emulation 

environment is developed in Mathcad.  Filter topologies are implemented in the discrete 

time domain, under fixed and floating point arithmetic with varying wordlengths.  Various 

filter frequency responses, input excitations and sampling rates are used to explore the 

behaviour of filter topologies under finite wordlength constraints. 

 

5.2 Filter test environment 
 
The finite wordlength filtering system, Figure 5-1, is implemented in the Mathcad 

environment (Mathsoft, 1998).  Various time domain filter topologies are implemented 

with finite wordlength arithmetic functions.  The tests conducted in this environment use a 

range of different filter input stimuli.  Each filter test uses a static filter frequency response 

with a static set of pre-calculated coefficients.  Furthermore, various signal processing 

sampling frequencies are used in the investigation (48, 96 and 192 kHz).  The time domain 

filters operate for a determined time period or number of samples (typically two seconds).  

This provides sufficient filter output samples to conduct comparative analysis through 

FFT spectrum analysis, time domain plots and RMS noise benchmarking. 
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Figure 5-1 Time domain filter topology analysis system 

 

5.2.1 Finite wordlength filter topologies 
 
The topologies considered in this work are introduced in Chapter 2, Section 2.5.  All 

topologies were implemented with floating point arithmetic.  Topologies that are immune 

from accumulator overflow, through the use of twos-complement modulo wrap-round, 

were also implemented in fixed point arithmetic.  As discussed in Chapter 2 Sections 2.4 

and 2.5, topologies which rely on scaling to prevent overflow were not implemented in 

fixed point arithmetic. 

For fixed point implementation the basic arithmetic operators for multiply and addition 

(accumulation) can be used.  The fixed point format is assumed to be fractional twos-

complement, the result of each arithmetic operation can simply be quantised to the 

resolution specified by a suitable rounding or truncation function, as discussed in Chapter 

4, Sections 4.2 and 4.3 .  Furthermore a quantiser has to be applied at every state variable 

storage point in the topology.  Double precision is simply implemented by increasing the 

resolution of the state variable quantiser to the relevant resolution.  Each of the topologies 

implemented are shown in Chapter 2, Section 2.5.  The quantisation points in each 

topology are shown, assuming single precision implementation. 

Floating point arithmetic cannot rely on the basic operators, since finite wordlength 

quantisation is dependent on the mantissa and exponent of the data.  Therefore specific 
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arithmetic functions for multiply and addition are used in replacement for the basic 

operators, as discussed in Chapter 4 (Section 4.4).  For example, consider the following 

arithmetic,  a.b + c.d + e.f , would be implemented as, 

 
 Add( Add( Mlt(a,b) , Mlt(c,d) ) , Mlt(e,f) ). 

 
The functions ‘Add’ and ‘Mlt’ perform addition and multiplication floating point 

arithmetic operations and apply quantisation for a specified wordlength and binary coding 

technique.  These functions are developed in Chapter 4 (Section 4.4).  Mathcad scripts of 

the discrete-time implementation of all of the filter topologies used in the tests are given in 

Appendix B. 

 

5.2.2 Frequency Response Specification 
 
In Chapter 2, Section 2.2 an introduction to audio equaliser filter types and associated 

filter frequency responses relevant to this work is given.  Filters with high gain in the pole 

transfer function and minimal attenuation in the zero transfer function, typically produce 

high noise gain.  These filters are generally low frequency filters with high Q factors and 

are critical in the examination of finite wordlength effects in filter topologies. 

Unfortunately no single frequency response illustrates all filter quantisation noise issues.  

Thus, in this work specific frequency responses are chosen to highlight particular noise 

issues.  However, the chosen filter parameter settings and associated frequency response 

are practical and could be used in mixing system equalisation. 

The High Pass Filter (HPF) is the most likely filter type to be used with an extremely low 

tuned frequency, for example 5 to 10 Hz.  However, HPF Q factor settings are typically 

low - in the region of 0.7071 (Butterworth).  A HPF tuned to 5 Hz, operating at a sampling 

frequency of 48 kHz, produces a high gain in the pole transfer function (a maximum of 

115 dB).  However, low frequency tuned HPF produce high attenuation in the zero 
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transfer function, especially at dc (zero Hz).  A notch filter is tuned to a minimum 

frequency of 20 Hz.  Using a –3 dB bandwidth of 7.5 Hz, at a sampling frequency of 48 

kHz, produces a maximum pole transfer function gain of 112 dB, Figure 5-2.  The notch 

filter zero transfer function does not produce as much broad band attenuation as the HPF 

and its overall response is zero dB at dc.  The bell filter is tuned to a minimum of 30 Hz.  

Bell filter Q settings are rarely as high as notch filter Q settings, especially for boost gain 

settings.  A Q setting of three is moderately high for boost scenarios.  A bell filter 

providing a gain of 18 dB at the tuned frequency of 30 Hz, with a Q factor setting of three, 

produces a maximum gain of 106 dB in its pole transfer function. 
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Figure 5-2  Pole transfer functions for 20 Hz notch filter (-3 dB bandwidth of 7.5 Hz). 

 
Filters can also produce high amounts of gain in the pole transfer function at high 

frequencies (close to the Nyquist frequency).  A notch filter tuned to 19 kHz, with a 

bandwidth of 7.5 Hz (which is not a practical scenario) produces 64 dB maximum gain in 

its pole transfer function.  Shelving filters do not produce high gain in their pole transfer 

functions and are not considered for noise behaviour investigations. 

Four filter types are used to obtain test frequency responses, in the work described in this 

chapter.  Three bell filter responses are used, one boosting at low frequency (30 Hz), one 

providing low frequency attenuation (20 Hz) and a high frequency bell filter boosting at 
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19 kHz.  Narrow bandwidth notch filters (-3 dB bandwidth of 7.5 Hz) tuned to various 

frequencies are used.  For example a low frequency 20 Hz notch and various high 

frequency notch filters are used in the zero input tests. 

 
• ’20 Hz bell filter cut case’, tuned to 20 Hz, 18 dB attenuation, Q factor of 8.65. 

• ’30 Hz bell filter boost case’, tuned to 30 Hz, 18 dB gain, Q factor of 3. 

• ’19 kHz bell filter boost case’, tuned to 16 kHz, 18 dB gain, Q factor of 3 

• ’20 Hz notch filter’, -3dB bandwidth of 7.5 Hz. 

• ’15, 16, 19 kHz notch filters’, -3dB bandwidth of 7.5 Hz. 

 

5.2.3 Input Excitation 
 
Single sinusoids, twin-tone signals and bursts of white noise are used as input stimuli for 

the various time domain filter tests.  Filters can be stimulated with high level white noise, 

approximating audio programme.  Noise analysis relies on an ideal filter output, under the 

same stimulus, being subtracted from the output of the filter under test.  However, white 

noise stimulus will not provide an efficient way of examining harmonic distortion.  A 

sinusoid, at a carefully selected frequency, is a good input stimulus for noise and harmonic 

distortion analysis.  Sinusoidal frequencies that are sub-multiples of the sampling 

frequency produce highly correlated quantisation noise.  This can be undesirable if the test 

is attempting to examine broad band quantisation noise effects.  For example, highly 

correlated quantisation errors are generated from one and four kHz tones at a sampling 

frequency of 48 kHz (Clark et al, 1995).   Fast fourier transforms (FFT’s) are used to 

provide signal spectrum analysis.  Sinusoidal input frequencies were bin centred, reducing 

FFT spectral leakage, (Harris, 1978).  Single sinusoidal input stimulus used the bin 

centred frequency of 999.0234 Hz.  This is the centre frequency for bin 341, using a 16384 

point FFT at a sampling frequency of 48 kHz.  At the sampling frequency of 96 kHz, a 

32768 point FFT is used.  The same bin centred frequency of 999.0234 Hz is used as an 
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input stimulus (bin 341).  Despite this bin centred frequency being a sub-multiple of the 

sampling frequencies, it does not produce a harmonically rich quantisation noise.  

Sinusoids were chosen around the 1 kHz region, since it is not in the same spectral region 

as the tuned frequencies of the example filters, chosen in this work.  This reduces the 

possibility of the input sinusoid masking any interesting noise products.  Zero input tests 

are also useful in the examination of limit cycle behaviour in filter structures.  However 

the filter must be excited prior to the zero input period.  This is performed using a burst of 

white noise followed by samples of zero amplitude.  Low level signals provide a method 

of examining the noise characteristics of topologies under low level signal operation.  This 

is performed using a sinusoid at –90 dBFS.  Inter-modulation distortion (IMD) tests are 

used to evaluate high level non-linearity in systems (Metzler, 1993).  IMD tests, using a 

twin-tone stimulus, are used to evaluate high signal level non-linearity of the filter 

topologies under test. 

5.2.4 Output Analysis 
 
Spectral analysis is performed through FFT’s providing the facility to examine distortion 

and noise products in the filter topology output.  Windowing functions can be applied in 

the time domain, prior to the FFT, to reduce spectral leakage, (Harris, 1978).  The 

Blackman Harris 4 (BH4) windowing function is widely used in audio applications 

(Harris, 1978).  The FFT frequency bins and resulting bin width, is largely responsible for 

the overall spectral resolution.  At a sampling frequency of 48 kHz, 16384 sample FFT’s 

are used, producing a frequency bin width of 2.92 Hz.  At the higher sampling frequencies 

of 96 and 192 kHz, 32768 sample FFT’s are used.  This maintains spectral bin width to 

2.92 Hz, for a 96 kHz sampling frequency.  At 192 kHz 32768 point FFT were used due to 

extremely long emulation periods.  Four 16384 (or 32768) sample FFT measurements 
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were averaged to reduce the effects of noise variation, which was especially noticeable at 

low frequencies. 

Root Mean Square (RMS) total harmonic distortion plus noise (THD+N) figures are used 

for broad band (0 to Fs/2 Hz) residual noise/distortion benchmarking.  A simple method of 

deriving an RMS residual noise/distortion figure from the output of the filter under test is 

to subtract an ‘ideal’ filter output from the filter under test, revealing the residual noise 

generated by the filter under test.  Since the ‘ideal’ filter has no finite wordlength 

limitations, the residual noise components are negligible.  It is essential that the ideal filter 

and filter under test produce the same frequency response (use the same coefficients, 

quantised or unquantised).  Equation 5-1 is a time domain function calculating the broad 

band RMS THD+N figure of a filter under test (FUT) within the time period defined by 

‘FirstSample’ and ‘LastSample’.  Note ‘IdealFilter’ is the output of the filter topology 

using no finite wordlength functions.  However the ‘ideal filter’ is subject to the finite 

wordlength limitations of Mathcad. 

 

TimeThD 20 log FirstSample

LastSample

k

FUTk IdealFilterk
2

=
LastSample FirstSample

.

 
 
         (5-1) 

 

5.2.5 Finite wordlength performance of the emulator 
 
This section of work aims to investigate the effects of controlled finite wordlength 

functions used to implement filter topologies.  Therefore the intrinsic finite wordlength 

limitations of the emulation environment, Mathcad, must be examined.  Mathcad is 

implemented using the ‘intel double precision’ data format, (Mathsoft, 1998).  This 

provides a 64 bit floating point data word comprising of a 53 bit significand (unsigned 
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fractional bits).  This finite wordlength determines the residual noise floor and dynamic 

range of the filter emulation environment.  Figure 5-3 shows the residual noise of the 

Mathcad system using a sinusoidal input, 993.023 Hz at 0 dBFS (dB full-scale), processed 

by the 16384 point FFT (using a BH4 window), averaging four FFT measurements, 

sampling at 48 kHz.  The largest distortion component is less than -241 dBFS at 11 kHz.  

This suggests a dynamic range, in the region of 240 dB. 

The DF1 topology was implemented using no finite wordlength arithmetic functions, 

operating at a sampling frequency of 48 kHz.  Figure 5-3 shows the residual distortion 

products for the DF1, for the 20 Hz notch filter, using a single sinusoidal stimulus of 

999.023 Hz, at 0 dBFS.  This measurement highlights a problem in noise measurement of 

emulated recursive filters.  At the start of the emulation, the filter’s output contains 

excessive ‘ringing’ energy in the pole frequency region.  This decays as the filter 

approaches steady-state operation.  It is important that this ringing energy is not confused 

or allowed to mask the actual noise and distortion products of interest.  It is therefore 

important to use a filter relaxation period before any filter output analysis is conducted.  

This period should be of a length in time to ensure that any ringing has decayed to a level 

below the residual noise of the emulation environment.  Figure 5-3 shows the output 

spectrum of the DF1 using the 20 Hz notch filter for various relaxation periods (26000, 

41000 and 90000 samples).  The FFT measurement made after a 26000 sample relaxation 

period shows considerable ringing energy.  It was found that for the notch and bell (cut) 

filter examples FFT measurements taken after a 41000 sample relaxation period produced 

negligible ringing above the residual noise floor of the ideal filter.  Figure 5-3 shows the 

output spectrum after a relaxation period of 90000 samples.  The residual noise products 

are not noticeably different of that from the 41000 sample starting point.  Therefore a 

relaxation period of 41000 samples, prior to any output analysis was adopted for sampling 

frequencies of 48 kHz.  For higher sampling rates, the pole ringing is considerably worse. 
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At sampling frequencies of 96 kHz a relaxation period of 82000 samples was required to 

reduce the pole ringing to below the residual noise floor. 
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Figure 5-3 Ideal filter noise measurements from Mathcad emulation environment at a sampling 
frequency of 48 kHz. 

 

5.3 Comparison of real and emulated systems 
 
The DF1 implemented in the finite wordlength emulation environment was compared to 

real measurements made from DF1 implementations on a DSP platform.  The DSP 

platform is based on the Analog Devices SHARC processor ADSP-21061 (Analog 

Devices, 1997) and performs IEEE 32 bit floating point arithmetic and twos-complement 

32 bit fixed point arithmetic.  An ‘AES 3’ digital audio interface (Audio Engineering 

Society, 1992), (Cirrus Logic, 1999) provided an interface between the DSP platform and 

the audio measurement system (Audio Precision System Two Cascade).  These tests were 

conducted at a sampling frequency of 48 kHz.  The entire audio signal path remained in 

the digital domain.  The AES/EBU digital input and output interface is a fixed point 24 bit 

word format.  For this reason the input and output data in the emulation used a 24 bit (sign 
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bit and 23 fractional bits) truncation quantiser.  Triangular dither was applied prior to the 

24 bit quantiser, as the digital signal generator in the Audio Precision measurement system 

also dithered its source prior to quantising the data to the 24 bit AES/EBU format.  The 

filter response used for the emulator DSP platform comparisons was the 20 Hz bell cut 

example (20 Hz, Gain of –18dB, Q factor of 8.65).  The SHARC assembler codes and 

respective Mathcad scripts for the emulated filters for the DF1 floating and fixed point 

implementations are given in Appendix C. 

 

5.3.1 Fixed point Direct Form 1 
 
The fixed point measurements made with the DSP platform and the Mathcad emulation 

environment are shown in Figure 5-4 and Figure 5-5, respectively.  Two DF1 structures 

were implemented, one using rounding and one using truncation quantisation.  Both the 

real and emulation measurements used a single sinusoidal input stimulus of 999.023 Hz at 

–10dBFS.  The fixed point implementation also uses a coefficient scaling factor of two, 

requiring an arithmetic shift left on the output of the accumulator, as shown in Figure 2.5 .  

FFT measurements of the DSP platform filters were made with the Audio Precision 

system using a 16384 point FFT, BH4 window, taking sixteen averages.  FFT 

measurements of the emulated filters use four averaged 16384 point FFT’s due to the 

limitations in emulation sample lengths.  Comparison of Figure 5-4 and Figure 5-5 shows 

that the measurements taken for the 32 bit fixed point DF1 emulation and that from the 

real 32 bit fixed point DSP platform are similar. 

 



                                                                          Chapter 5 Topology behaviour in finite wordlength arithmetic
 

 107

-190

+0

-180

-170

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

d
B
F
S

1 20k2 5 10 20 50 100 200 500 1k 2k 5k 10k

Hz

 
 
 

Figure 5-4 DF1output spectrum from the SHARC DSP platform, 32 bit fixed point. Bell filter (20 Hz, 
–18dB, Q=8.65),  sine input, 999.023 Hz, –10 dBFS, 16 FFT averages 16384 bins, BH4 window. 
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Figure 5-5 DF1output spectrum from Mathcad emulation , 32 bit fixed point. Bell filter (20 Hz, –18dB, 
Q=8.65),  sine input, 999.023 Hz, –10 dBFS, 4 FFT averages 16384 bins, BH4 window. 
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5.3.2 Floating point Direct Form 1 
 
The DSP platform implements IEEE floating point arithmetic (Analog Devices, 1997). 

The IEEE floating point arithmetic emulation uses 32 bit sign magnitude arithmetic 

functions (23 fractional bits) with a 40 bit extended format (31 fractional bits).  Two DF1 

implementations were developed one using rounding and one using truncation 

quantisation.  Three low level sinusoids were used as test stimuli, -80, -90 and -100 dBFS, 

all at a frequency of 999.023 Hz. 

Figure 5-6 shows the output spectrum of the DF1 DSP platform, 32 bit (single precision 

storage elements), using truncation quantisation.  Figure 5-7 shows the equivalent output 

spectrum for the emulated DF1.  Figure 5-8 shows the output spectrum of the DF1 DSP 

platform, 32 bit (single precision storage elements), using rounding quantisation.  This can 

be compared to the emulated floating point DF1 using rounding in Figure 5-9.  The 

emulated filter output spectra for truncation and rounding are both similar to the DSP 

platform output spectra.  However it is evident that there is some variation in the low 

frequency noise products.  This was examined further, by comparing single FFT 

measurements across time, made with the Audio Precision measurement system.  

Noticeable differences were found in the LF noise products for each FFT measurement.  

For the real DSP platform measurements sixteen FFT averages could simply be employed 

to reduce noise variance.  However increasing the FFT number of averages in the 

emulation, led to unfeasible emulation time periods 
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Figure 5-6 DF1output spectrum from DSP platform, 32 bit IEEE floating point, using truncation.  Bell 
filter (20 Hz, –18dB, Q=8.65),  sine input, 999.023 Hz, 16 FFT averages 16384 bins, BH4 window. 
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Figure 5-7 DF1output spectrum from Mathcad emulation , 32 bit IEEE floating point, using 
truncation.  Bell filter (20 Hz, –18dB, Q=8.65),  sine input, 999.023 Hz, 4 FFT averages 16384 bins, 
BH4 window. 
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Figure 5-8 DF1output spectrum from DSP platform, 32 bit IEEE floating point, using rounding.  Bell 
filter (20 Hz, –18dB, Q=8.65),  sine input, 999.023 Hz, 16 FFT averages 16384 bins, BH4 window. 
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Figure 5-9 DF1output spectrum from Mathcad emulation , 32 bit floating point, sign magnitude using 
rounding.  Bell filter (20 Hz, –18dB, Q=8.65),  sine input, 999.023 Hz, 4 FFT averages 16384 bins, BH4 
window. 
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5.4 Filter topology noise analysis, sampling at 48 kHz 
 
In this section finite wordlength filter topology noise analysis is performed using near 

maximum level single sinusoidal input (-1dBFS).  As discussed in Section 5.2.3 the 

sinusoidal input frequency is bin centred, 999.023 Hz, and does not produce a highly 

correlated quantisation noise.  This section studies the topologies operating at a sampling 

frequency of 48 kHz.  FFT’s (four averaged, 16384 point, using the BH4 window) are 

used to provide spectrum analysis of noise and distortion components of the filter’s 

output.  Broad band RMS THD+N figures are used for comparative purposes.  These 

figures suggest the potential dynamic range of the filter topologies. 

 

5.4.1 Direct Form 1 
 
Direct Form 1 (DF1) can be implemented in fixed point arithmetic, without scaling, 

through the use of twos-complement modulo wrap-round.  Therefore the DF1 was 

implemented in both fixed and floating point arithmetic.  Figure 5-10 shows the DF1 

output spectrum for a single precision, 24 bit fixed point implementation using truncation. 

The filter response used was the 20 Hz notch filter case.  It is clear that the dc offset 

(negative bias) in the truncation noise is greatly amplified by the pole transfer function.  

The rounding accumulator does not suffer from this since the rounding quantiser produces 

no dc offset.  Using first order error feedback (addition of a zero at dc in the error transfer 

function) greatly reduces the pole transfer function noise, inherent in low frequency high 

Q filters.  The same implementation was made for the DF1, 24 bit fixed point using the 

bell boost case filter.  The output spectrum is shown in Figure 5-11.  The bell boost case 

filter produces less LF noise compared to the notch filter.  This is due to less gain in the 

bell filter pole transfer function. 
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Figure 5-10 DF1 output spectrum for 24 bit fixed point implementations, 20 Hz notch filter, 7.5 Hz 
bandwidth. 
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Figure 5-11 DF1 output spectrum for 24 bit fixed point implementations, Bell filter, 30 Hz, Q of 3, 
Gain 18dB. 

 
Figure 5-12 shows the DF1 output spectrum implemented in 24 bit double precision and 

32 bit fixed point.  State variables stored at 24 bit double precision is equivalent to 46 

fractional bits.  The filter response used was the 20 Hz notch filter.  Comparison of Figure 
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5-10 and Figure 5-12 shows that a 24 bit wordlength, using first order error feedback (zero 

at dc) is similar in noise performance to a 32 bit wordlength, using rounding.  The 

truncated 32 bit DF1 produces noticeable dc offset, approximately –88 dBFS, Figure 5-12. 
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Figure 5-12 DF1 output spectrum for single precision 32 bit and double precision 24 bit, fixed point 
implementations, 20 Hz notch filter, 7.5 Hz bandwidth. 

 
Figure 5-13 shows the DF1 output spectrum using sign magnitude and twos-complement 

32 bit floating point implementations, where rounding is used at each quantisation point.  

Figure 5-14 shows the same measurement for twos-complement and sign magnitude 

truncation quantisation.  It is clear that the truncation quantiser under floating point 

produces considerably more harmonic distortion than for rounding quantisation.  

Distortion products from floating point extended precision implementation (40 bits, using 

31 fractional bits) are shown in Figure 5-15 and Figure 5-16.  Figure 5-15 shows the DF1 

output spectrum, rounding to 31 fractional bits (sign magnitude and twos-complement).  

Figure 5-16 shows the same measurement for truncation quantisation.  The noise 

performance is similar to that produced by 32 bit fixed point arithmetic and is inferior to 

fixed point 24 bit double precision (46 fractional bits), Figure 5-12. 
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Figure 5-13 DF1 output spectrum for single precision, 32 bit floating point implementations using 
rounding, 20 Hz notch filter, 7.5 Hz bandwidth. 
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Figure 5-14 DF1 output spectrum for single precision, 32 bit floating point implementations using 
truncation, 20 Hz notch filter, 7.5 Hz bandwidth. 
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Figure 5-15 DF1 output spectrum for extended precision 40 bit floating point implementations using 
rounding, 20 Hz notch filter, 7.5 Hz bandwidth. 
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Figure 5-16 DF1 output spectrum for extended precision 40 bit floating point implementations using 
truncation, 20 Hz notch filter, 7.5 Hz bandwidth. 

 

5.4.2 Direct Form 2 
 
The Direct Form 2 (DF2) is a pole before zero topology.  DF2 cannot use modulo wrap-

round and relies on scaling to avoid overflow in fixed point implementations.  Therefore, 

in this work, DF2 is only considered for floating point implementation.  The DF2 error 
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transfer function contains the pole and zero transfer functions and thus the error transfer 

function resembles that of the overall filter frequency response.  Therefore filters with gain 

in the magnitude frequency response typically produce worse case noise performance.  

The bell boost filter is favoured as a worse case test and is a filter response with high gain 

in its pole transfer function.   

Figure 5-17 shows the noise behaviour for DF2 realising the 20 Hz notch filter.  The 

overall noise floor response is flat in the 20 Hz pole region, despite the high pole gain.  

Figure 5-17 also shows the intermediate pole only output spectrum, which suffers from 

high noise gain in the 20 Hz pole region.  

Figure 5-17 also shows the 20 Hz notch filter zero transfer function, that attenuates this 

pole noise energy at the final output of DF2.  Figure 5-18 shows the DF2 realising the 30 

Hz bell boost filter.  Its intermediate (pole only) output produces approximately 10dB less 

gain than the 20 Hz notch filter pole only output.  This results in the intermediate pole 

only noise product being 10dB less than that of the notch filter.  However the 30 Hz bell 

filter zero transfer function produces less attenuation and consequently its overall noise 

product is larger than the 20 Hz notch filter, as shown in  

Figure 5-17 and Figure 5-18. 
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Figure 5-17 DF2 output spectrum for single precision 32 bit floating point implementation using 
rounding, 20 Hz notch filter, 7.5 Hz bandwidth. 
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Figure 5-18 DF2 output spectrum for single precision 32 bit floating point implementation using 
rounding, Bell Filter 30Hz, Q of 3, gain 18dB. 

 
 
Figure 5-19 shows the DF2 output spectra, using 32 bit floating point twos-complement 

and sign magnitude truncation.  Harmonic distortion caused by the truncation of twos-

complement and sign magnitude coded data is visible.  Output spectra for DF2 using 
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floating point 40 bit extended precision (31 fractional bits), are shown in Figure 5-20 and 

Figure 5-21.  Even order harmonic distortion components from truncating twos-

complement data are most noticeable, Figure 5-21. 
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Figure 5-19 DF2 output spectrum for single precision 32 bit floating point implementation using 
truncation, Bell Filter 30Hz, Q of 3, gain 18dB. 
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Figure 5-20 DF2 output spectrum for extended precision 40 bit floating point implementation using 
rounding, Bell Filter 30Hz, Q of 3, gain 18dB. 
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Figure 5-21 DF2 output spectrum for extended precision 40 bit floating point implementation using 
truncation, Bell Filter 30Hz, Q of 3, gain 18dB. 

 

5.4.3 Transposed Direct Form 1 
 
The Transposed Direct Form 1 (DF1T) is a pole before zero topology. DF1T relies on 

scaling for fixed point implementations.  Therefore DF1T is only examined in floating 

point implementations.  Using the 30 Hz bell filter, DF1T is compared to DF2 in Figure 

5-22, using single precision 32 bit floating point sign magnitude coding.  DF1T produces 

slightly more noise than DF2.  This is due to the additional quantisation points (noise 

source) in the topology, Figure 2-9.  The RMS THD+N figures for the DF1T in the 

example shown in Figure 5-22 is 2 dB greater than that of the DF2 (DF1T produces -115 

dBFS, DF1T produces -113 dBFS). 

Figure 5-23 shows the noise products using extended precision 40 bit (31 fractional bits) 

floating point arithmetic.  The corresponding RMS THD+N figure for the DF1T is –153.2 

dBFS and for the DF2 is -150.9 dBFS.  These results are explained by the nature of 

quantisation noise in extended precision implementation.  Single precision implementation 

generates relatively large quantisation noise source at the points in the topology prior to 
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state variable storage.  In floating point extended precision implementations every 

arithmetic operation is potentially a quantisation noise source, although much smaller 

noise source, as discussed in Chapter 2.  The DF1T topology, Figure 2-9, has separate 

addition nodes for the pole paths prior to their addition to the relatively small input 

(magnitude less than unity).  This forces the pole path state variables to be summed prior 

to the addition with the input.  Since the pole path state variables are large in magnitude, 

summing these together prior to summation with the filter input generates a smaller 

overall quantisation error, under finite wordlength floating point addition. 

The DF2 implementation uses one accumulator at this point in the topology, Figure 2-8.  

Therefore the state variable and input summation ordering has implications in the resulting 

quantisation error and ultimate noise performance in extended precision floating point 

implementations.  Figure 5-23 shows extended precision implementations of DF1T, DF2 

(summing input with the first pole path, then the second pole path) and DF2 summing the 

pole paths first, then the input).  The latter DF2 is similar to the DF1T implementation and 

produces a slightly superior noise characteristic, as shown in Figure 5-23. 
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Figure 5-22 DF1T and DF2 output spectrum for single precision 32 bit floating point implementation 
using truncation, Bell Filter 30Hz, Q of 3, gain 18dB. 
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Figure 5-23 DF1T and DF2 output spectrum for extended precision 40 bit floating point 
implementation using truncation, Bell Filter 30Hz, Q of 3, gain 18dB. 

 

5.4.4 Transposed Direct Form 2 
 
The Transposed Direct Form 2 (DF2T) is a zero before pole topology.  Despite its two 

accumulators, it can utilise modulo wrap-round to avoid accumulator overflow.  Therefore 

the DF2T is examined under fixed and floating point implementations.  The DF2T noise 

characteristics are similar to DF1 and are tested using the 20 Hz notch filter.  Figure 5-24 

and Figure 5-25 show the output spectra of DF2T and DF1 using 24 bit fixed point 

arithmetic for truncation and rounding.  The DF2T produces approximately 12 dB more 

noise across the spectrum compared to DF1.  This can be attributed to the additional 

quantisation points in the topology, Figure 2-10.  Figure 5-26 compares output spectra of 

DF2T to DF1 under 32 bit single precision floating point implementation. Figure 5-27 

compares the output spectra of DF2T to DF1 under 40 bit extended precision floating 

point implementation.  Noise performance differences between DF1 and DF2T for both 

floating point implementations are considerably less noticeable. 
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Figure 5-24 DF2T and DF1 output spectrum for 24 bit fixed point implementations, using truncation, 
20 Hz notch filter, 7.5 Hz bandwidth. 
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Figure 5-25 DF2T and DF1 output spectrum for 24 bit fixed point implementations, using rounding, 
20 Hz notch filter, 7.5 Hz bandwidth. 
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Figure 5-26 DF2T and DF1 output spectrum for single precision 32 bit floating point implementations, 
using rounding, 20 Hz notch filter, 7.5 Hz bandwidth. 
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Figure 5-27 DF2T and DF1 output spectrum for extended precision 40 bit floating point 
implementations, using truncation, 20 Hz notch filter, 7.5 Hz bandwidth. 

 

5.4.5 Coupled Forms (Gold-Rader, Zölzer, Kingsbury) 
 
The coupled forms are all zero before pole topologies.  They also require scaling to 

prevent overflow and are therefore only considered for floating point implementation in 
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this work.  Figure 5-28 shows the output spectra for the couple forms, using 32 bit single 

precision floating point implementation, sign magnitude coding, truncating at quantisation 

points.  The filter response used was the 20 Hz notch filter.  All three coupled forms have 

high pole gain in their error transfer functions, however for LF tuned filters the coupled 

forms provide some additional noise rejection compared to DF1.  RMS THD+N figures 

were derived from the time responses, 

 DF1   - 80.5   dBFS, 
 Gold-Rader  - 98.5   dBFS, 
 Kingsbury  - 105.6 dBFS, 
 Zölzer  - 106.9 dBFS. 
 
However the coupled forms noise performance does not compare as well for high 

frequency tuned filters.  Figure 5-29 shows the resultant noise products using the 19 kHz 

notch filter.  The corresponding RMS THD+N figures are also given, 

  DF1   -124.7  dBFS, 
Gold-Rader   -118.3  dBFS, 
Kingsbury  -118.8  dBFS, 
Zölzer   -118.3  dBFS. 
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Figure 5-28 Coupled forms output spectra for single precision 32 bit floating point, sign magnitude 
using truncation, 20 Hz notch filter, 7.5 Hz bandwidth. 
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Figure 5-29 Coupled forms output spectra for single precision 32 bit floating point, sign magnitude 
using truncation, 19 kHz notch filter, 7.5 Hz bandwidth. 

 

5.4.6 State-space structure 
 
The state-space structure (or normal form) utilises L2 scaling at internal nodes to minimise 

overflow.  Therefore the structure is prone to overflow under high level input conditions 

whose frequency content is in the tuned pole frequency region.  Therefore the structure is 

implemented under floating point for the purposes of this work.  Furthermore the topology 

coefficients are not typically fractional.  Coefficient scaling is complex, making fixed 

point implementation computationally exhaustive.  The topology is not simply zero before 

pole, there are scaling coefficients after the pole transfer function and part of the zero 

transfer function is in parallel with the pole transfer function implementation. 

Figure 5-30 shows the output spectrum of the state-space structure realising the 20 Hz 

notch filter example.  The measurements shown are for 32 and 40 bit floating point 

wordlengths using sign magnitude coding.  The measurement for 32 bit truncated 

wordlengths produce a THD+N figure of –150.6 dB.  The measurement for 32 bit 
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rounding produces a THD+N figure of -156.9 dB.  The 40 bit (extended precision) 

measurement produces a THD+N figure of -193.2 dB. 
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Figure 5-30 State-space output spectra for 32 and 40 bit floating point implementations, sign 
magnitude coding, 20 Hz notch filter, 7.5 Hz bandwidth. 

5.4.7 State-space hybrid (Cabot) structure 
 
The state-space hybrid, Cabot, structure, uses the pole transfer function implementation 

used in the state-space structure and couples that with a direct form zero transfer function 

implementation.  The resulting zero before pole topology is shown in Figure 2-15. 

Through observation of numerical behaviour at the accumulator nodes it was found that 

for the 20 Hz notch filter, using a full scale sinusoidal input at various frequencies the 

topology did not generate accumulator overflow.  Although this does not prove that the 

topology is immune from overflow, the topology was examined under fixed and floating 

point implementation.  The resulting output spectra for 24 bit fixed and 32 bit floating 

point implementations are shown in Figure 5-31.  For fixed point operation the topology in 

was found to produce similar noise characteristics to that of the DF1.  In floating point 
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implementation the topology noise performance is superior to DF1, compare Figure 5-13 

and Figure 5-31. 
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Figure 5-31 Cabot structure output spectra for 24 bit fixed point and 32 bit floating point 
implementations, 20 Hz notch filter, 7.5 Hz bandwidth. 
 

5.4.8 Lattice and Ladder topologies 
 
The ladder allpass topology is scaled using the L2 norm.  Despite being resilient to 

overflow, the topology can overflow under high level input excitation in the tuned 

frequency region.  The lattice structure is prone to overflow, since it has unbounded 

accumulation nodes.  Therefore, in this work, all ladder and lattice structures are 

implemented in floating point arithmetic.  Since the structures are pole before zero, the 30 

Hz bell boost filter example is used.  The two ladder filter implementations, referred to as 

‘Moorer’ and ‘Massie’ in this work are discussed in Chapter 2, Section 2.5.5 . 

Figure 5-32 compares the noise products produced by the Massie and Moorer ladder 

structures in 32 bit floating point arithmetic, using truncation at quantisation points.  The 

resulting noise floors for the ladder structures resemble the overall filter frequency 

response.  The Moorer implementation produces less high frequency noise than the Massie 

structure.  This is reflected in the respective THD+N figures, -148.8 dBFS for the Moorer 
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structure and -139.4 dBFS for the Massie structure.  The noise products of the ladder 

allpass are the same as the Massie structure attenuated by 18 dB (the tuned gain factor).  

Figure 5-33 shows the residual noise produced by the lattice allpass and Massie structures, 

implemented in 32 bit floating point truncated arithmetic.  The THD+N figure for the 

lattice Massie structure is -132.3 dBFS (7 dB higher than the ladder Massie). 
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Figure 5-32 Ladder structures output spectra for single precision 32 bit floating point, sign magnitude 
implementation, 30 Hz bell filter, Q of 3, gain 18dB. 
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Figure 5-33 Lattice structures output spectra for single precision 32 bit floating point, sign magnitude 
implementation, 30 Hz bell filter, Q of 3, gain 18dB. 
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Figure 5-34 shows the ladder structures output spectra for the 19 kHz bell filter with 18 

dB of gain.  The filter is implemented using 32 bit floating point, sign magnitude coding.   

The residual noise produced by the Massie structure is 18 dB higher than that of the 

allpass.  The Moorer structure produces lower noise components at low frequency than the 

Massie structure.  The THD+N figure for the Moorer structure is -142.5 dBFS.  The 

THD+N figure for the Massie structure is -138.2 dBFS.  Figure 5-35 shows the residual 

noise produced by the Lattice allpass and Massie structures for the same 19 kHz bell boost 

filter example. The THD+N figure for the lattice Massie structure is -138.6 dBFS. 
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Figure 5-34 Ladder structures output spectra for single precision 32 bit floating point, sign magnitude 
implementation, 19 kHz bell filter, Q of 3, gain 18dB. 
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Figure 5-35 Lattice structures output spectra for single precision 32 bit floating point, sign magnitude 
implementation, 19 kHz bell filter, Q of 3, gain 18dB. 

 

5.5 Low signal level non-linearity 
 
Low level sinusoids at -90 dBFS were used to examine the behaviour of topologies 

operating at low levels.  The 20 Hz notch filter was used due to its high gain pole transfer 

function, see Section 5.2.2 .  Figure 5-36 shows the DF1 output spectrum implemented in 

24 bit fixed point arithmetic, using a 999.023 Hz sinusoidal input at –90 dBFS.  The 

harmonic distortion components of the –90 dBFS input sinusoid for 24 bit fixed point 

representation are visible.  Comparing the noise products to that of the same test using a 

high level sinusoid (-1 dBFS), Figure 5-10, indicates that the peak noise region (20 Hz) 

has dropped by less than 20 dB, whereas the difference in input level is 89dB.  This 

suggests an unmodulated noise product for change in input level.  Fixed point quantiser 

noise variance is insensitive to changes in signal level, (Barnes, 1985) explaining the 

unmodulated noise products in the fixed point DF1.  Despite the benefits of unmodulated 

noise products with input level, the low frequency noise products, for fixed point 24 bit 

DF1, are higher in magnitude than the input signal. 
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Figure 5-36  DF1 output spectrum using 24 bit fixed point arithmetic, under low level input –90 dBFS, 
20 Hz notch filter. 

 
DF1 floating point implementation produces opposing properties.  Comparison of Figure 

5-13 and Figure 5-37 shows that for floating point implementations the noise products 

drop by nearly 90 dB for a decrease of 89dB in signal level.  This suggests high noise 

modulation against input operating level, naturally maintaining dynamic range of the 

filter.  All other topologies implemented under floating point arithmetic were found to 

produce similar properties.  The noise products were scaled by the input operating level, 

producing high noise modulation with change in signal level. 

The application of triangular dither to a signal, prior to a quantiser, can eliminate non-

linear quantisation distortion and provide an uncorrelated noise floor, with respect to the 

signal (Vanderkooy and Lipshitz, 1987).  The application of dither to DF1 is simple, 

requiring a single dither source added to the accumulator, prior to quantisation point.  The 

effects of dither in the DF1 topology, for fixed and floating point arithmetic, using low 

level inputs were examined.  Figure 5-37 shows the DF1 output spectrum using floating 

point arithmetic, adding triangular dither at the mantissa LSB.  The dither produces a 
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noise floor comparable to 24 bit fixed point.  This noise floor does not modulate with the 

input signal level. 
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Figure 5-37 DF1 output spectrum using 32 bit floating point arithmetic, under low level input –90 
dBFS, 20 Hz notch filter. 

 
Figure 5-38 shows the DF2T noise products, in 24 bit fixed point, at low level operation.  

Comparing this with DF2T at high level operation, Figure 5-24, shows that noise products 

do not reduce with operating level proportionally, suggesting low noise modulation with 

input level.  Figure 5-38 shows that the fixed point DF2T, at low operating level, produces 

less correlated noise products (harmonic distortion) than DF1.  This de-correlation of the 

DF2T quantisation noise is attributable to its multiple quantisation noise source, compared 

to the single quantisation point in DF1.  Figure 5-38 also shows the output spectrum of the 

24 bit fixed point DF1 using triangular dither prior to truncation.  The dither is shown to 

eliminate the harmonic distortion components shown in the undithered DF1 plot, at the 

expensive of a small increase in broad band noise.  The undithered DF2T produces similar 

noise characteristics, namely an absence of harmonic distortion.  However, the DF1 using 

dither produces a slightly lower noise floor than the undithered DF2T. 
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Figure 5-38 DF2T and DF1 output spectrum using 24 bit fixed point arithmetic, under low level input 
–90 dBFS, 20 Hz notch filter. 
 

5.6 Zero input behaviour 
 
The zero input test, uses a single initial white noise burst as an input stimulus.  After an 

arbitrary period of one thousand samples of white noise, the input is switched to zero, 

Figure 5-39.  At the point of zero input the filter is subjected to a step change and the pole 

paths produce a decaying oscillation as the filter approaches steady state.  This pole 

ringing was discussed in Section 5.2.5 of this chapter.  The limit cycle behaviour is caused 

by this decaying oscillation in the pole paths diminishing below the finite wordlength 

limitations of the topology implementation.  As the state variables continuously attempt to 

numerically equal data values smaller than the finite wordlength capabilities, coarsely 

quantised data values re-circulate in the recursive pole paths.  This causes zero input limit 

cycle behaviour. 

During these tests, filter output analysis was conducted after the filter settling period.  

Limit cycle behaviour is easily distinguished as self-sustained, constant level energy.  

Non-steady state, filter ringing effects are a decaying energy against time. 
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Figure 5-39 Noise burst input used in zero input tests 

 

5.6.1 Zero input limit cycles in fixed point arithmetic  
 
Zero input limit cycle effects are noticeable with fixed point arithmetic and have been 

widely documented.  Jackson (1986) relates limit cycle behaviour to the position of the 

poles in the stability triangle, Figure 3-20.  Numerous tests were conducted using notch 

filters of varying centre frequency for the DF1 and DF2T topologies, in fixed point 

implementation.  High frequency tuned notch filters (for example, above 15 kHz, 

assuming a sampling frequency of 48 kHz) with extremely high Q (-3dB bandwidth 7.5 

Hz) were found to produce worst case limit cycle behaviour. 

However, (Jackson, 1986) reports limit cycle behaviour cannot always be determined by 

stability triangle rules.  In this work, it was found that increasing the gain in the pole 

transfer function did not ensure an increase in limit cycle magnitude.  However the 

following examples discussed in this section were typical and generalise the behaviour 

observed in these tests. 

Despite the immunity of sign magnitude truncation to zero input limit cycles (Claasen et 

al, 1973), fixed point arithmetic utilises twos-complement truncation.  Figure 5-40 shows 

zero input behaviour of DF1 using truncation and rounding for 24 bit fixed point 

arithmetic.  The filter used is a 16 kHz notch filter (bandwidth of 7.5 Hz).  In this case the 

truncated DF1 does produce an output of zero magnitude.  The DF1 using rounding 

produces a limit cycle output at the pole frequency, with a peak magnitude of 
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approximately –82 dBFS.  However scenarios were found where twos-complement 

truncation produces limit cycle behaviour.  An example of this is shown in Figure 5-41, 

using a 19 kHz notch frequency filter (-3dB width equal to 7.5 Hz).  The DF1 using 

rounding produces a limit cycle peak magnitude of approximately -102 dBFS.  The DF1 

using truncation produces a limit cycle peak magnitude of approximately -108 dBFS. 

In 24 bit fixed point implementation using double precision pole paths limit cycle 

behaviour is eliminated. As the quantisation error noise source in the pole paths are 

completely removed.  In (Higgins and Munson, 1984; Dattorro, 1988) first order error 

feedback is said to improve limit cycle suppression.  In this work the use of first order 

error feedback is found to produce some limit cycle amplification, in some instances.  

Figure 5-40 shows the limit cycle behaviour for the 16 kHz notch filter.  The DF1 using 

24 bit fixed point truncation produces no limit cycle behaviour (converges to zero).  Once 

error feedback is introduced limit cycle behaviour occurs.  This is true for both first order 

error feedback schemes (dc and Nyquist frequency error feedback).  For nominal input 

operating levels the noise performance of the 16 kHz notch filter would be improved 

through the use of Nyquist frequency error feedback.  However the error feedback path 

promotes limit cycle behaviour for high frequency limit cycle scenarios.  The dc zero error 

feedback scheme is worst (limit cycle peak magnitude of -78 dBFS) and produces a 

greater limit cycle magnitude than that caused by rounding.  However the use of error 

feedback does not always amplify or promote limit cycle behaviour as shown in Figure 

5-41. 

 



                                                                          Chapter 5 Topology behaviour in finite wordlength arithmetic
 

 136

7 .104 7.0005 .1047.001 .1047.0015 .1047.002 .1047.0025 .1047.003 .104 7.0035 .1047.004 .1047.0045 .1047.005 .104

0

1 .10 4

2 .10 4

DF1, fixed 24 bit rounding
DF1, fixed 24 bit truncation
DF1, fixed 24 bit, 1st order error feedback (zero at dc)
DF1, fixed 24 bit, 1st order error feedback (zero at Nyquist)

time, samples

m
ag

ni
tu

de

 
Figure 5-40 DF1 output, showing zero input limit cycle behaviour, using 24 bit fixed point arithmetic, 
using 16 kHz (7.5 Hz width) notch filter 
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Figure 5-41 DF1 output, showing zero input limit cycle behaviour, using 24 bit fixed point arithmetic, 
using 19 kHz (7.5 Hz width) notch filter 

 
Figure 5-42 shows an interesting example of limit cycle behaviour in DF2T in 24 bit fixed 

point implementation using the 19 kHz notch filter.  For the tests conducted, DF2T 

produced less instances of zero input limit cycle behaviour for truncation and generally 

larger limit cycle magnitudes than DF1 for rounding.  This could be explained by the extra 

quantisation points in the DF2T compared to the single quantisation point in the DF1 
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topology.  Since rounding promotes limit cycle behaviour, it is conceivable that more 

rounding points in the topology, increases the probability of limit cycle behaviour.  Since 

truncation can eliminate limit cycle behaviour, the more truncation points in the topology, 

may increase the probability of the state variables and output converging to zero. 
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Figure 5-42 DF1 and DF2T output, showing zero input limit cycle behaviour, using 24 bit fixed point 
arithmetic, using 19 kHz (7.5 Hz width) notch filter 

 

5.6.2 Zero input limit cycles in floating point arithmetic 
 
Zero input limit cycle behaviour was examined using 32 bit sign magnitude floating point 

arithmetic.  (Claasen et al, 1973) reports that zero input limit cycles are virtually non-

existent using sign-magnitude truncation.  Furthermore (Kaneko, 1973) shows that limit 

cycles occur in floating point arithmetic, using rounding.  The DF1 was implemented 

using 32 bit sign magnitude floating point, for rounding and truncation.  The DF1 using 

floating point sign magnitude truncation produced a continuously decaying frequency, in 

the pole frequency region.  At the end of the test period the DF1 output had reached 

magnitudes in the region of –400 dBFS and was still decaying.  This suggests the filter 
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output had not reached a state of steady cyclic behaviour at the end of the test period 

suggesting limit cycles were certainly below –400 dBFS. 

However floating point sign magnitude rounding did produce limit cycles.  Figure 5-43 

shows a typical limit cycle using 32 bit floating point sign magnitude rounding, for a 16 

kHz notch filter (bandwidth 7.5 Hz).  The limit cycle is extremely small, approximately, -

350 dBFS.  Further tests using rounding did not produce limit cycles that were 

considerably larger than shown in this example. 
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Figure 5-43 DF1 output, showing zero input limit cycle behaviour, for 32 bit floating point arithmetic 
using rounding, 16 kHz (7.5 Hz width) notch filter 
 

5.7 High signal level non-linearity 
 
The quantisation of low level signals produces non-linear correlated noise as examined in 

Section 5.5.  High level non-linearity effects of finite wordlength are largely dependent on 

the correlation between the quantisation noise and input signal.  Chapter 4, Section 4.2 

examines fixed and floating point quantisation errors.  It is shown that fixed point twos-

complement truncation noise is less correlated with the source signal than for floating 

point truncation noise.  Furthermore twos-complement coded floating point data produces 

odd and even order harmonic distortion products.  Sign magnitude floating point 
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truncation produces odd order distortions with the largest distortion component at the 

input fundamental frequency, Figure 4-8. 

Further consequences of the harmonic distortions caused by various quantisers can be 

performed using higher frequency sinusoids.  Figure 5-44 shows the distortions 

components of basic fixed and floating point truncation quantisers using a 15000.3 Hz 

tone at –1dBFS, (15 kHz is a direct sub-multiple of the 48 kHz sampling frequency and 

produces heavily correlated quantisation noise). The sign magnitude floating point 

truncator produces harmonic distortion at the fundamental frequency and the fifth and 

seventh order harmonic, 75 and 105 kHz.  At the sampling frequency of 48 kHz these 

harmonics are aliased to produce in band distortion components at 3 and 9 kHz. In 

addition to these harmonics, the twos-complement truncator produces noticeable even 

order harmonic distortion (second, forth and sixth).  These even order components alias to 

produce in band distortion components at 6, 12 and 18 kHz.  Despite the fixed point 

truncator producing a large dc offset and a higher noise floor, the harmonic distortion 

components generated by the floating point truncators are potentially more audible. 
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Figure 5-44 Distortion components generated by 24 bit fixed point and 32 bit floating point 
truncation.  Operating on a 15000.3 Hz sinusoid at –1dBFS.  
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The evaluation of system non-linearity at high signal levels is conventionally measured 

through inter-modulation distortion (IMD) measurements, using multi-tone stimulus.  

Twin-tone stimulus of equal amplitude are commonly used to test bandwidth limited 

(digital) systems, (Metzler, 1993).  Twin-tone digital systems with a limited bandwidth of 

15 kHz have historically used 13 and 14 kHz tones.  Modern standards (Audio 

Engineering Society, 1998) specify 18 and 20 kHz as suitable tones to test higher 

bandwidth systems, up to 24 kHz.  The choice of twin tone frequencies is complex.  The 

IMD test attempts to view IMD distortion products and not aliased harmonics or sampling 

frequency correlated distortion components.  If a frequency is chosen that is a direct sub-

multiple of the sampling frequency then the resulting quantisation noise will always be 

correlated with the input.  Also the use of certain frequencies will produce high order 

harmonics aliased into the base band.  Two sinusoidal frequencies, 14955 and 15952 Hz, 

were found to produce relatively flat (uncorrelated) truncation noise with no noticeable 

aliased harmonic distortions components which could be mistaken for IMD products.  

These two tones at an individual operating level of –6 dBFS were summed and used as 

input stimulus for fixed and floating point quantisers, Figure 5-45.  Inter-modulation 

products, 1 and 2 kHz, are clearly visible for the twos-complement 32 bit floating point 

truncator.  The 1 kHz distortion product is a second order IMD product. The 2 kHz 

distortion product is a fourth order IMD product. 
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Figure 5-45 Inter-modulation distortion products for fixed and floating point truncation, using twin 
tones at 14955 Hz and 15952 Hz, each at –6 dBFS. 

 
Figure 5-46 shows the output spectra for DF1 twin tone test, using fixed and floating point 

arithmetic, for the 20 Hz notch filter.  Even order (second and forth) IMD products, from 

twos-complement floating point truncation, are visibly above the noise floors for each of 

the other implementations.  Figure 5-47 shows the state-space topology output spectrum 

under twin tone excitation, using the 20 Hz notch filter.  Despite its excellent noise floor, 

IMD products for twos-complement floating point truncation are visible. 
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Figure 5-46 DF1 inter-modulation distortion products for fixed and floating point truncation, using 
twin tones at 14955 Hz and 15952 Hz, each at –6 dBFS, 20 Hz notch filter. 
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Figure 5-47 State space topology inter-modulation distortion products for floating point truncation, 
using twin tones at 14955 Hz and 15952 Hz, each at –6 dBFS, 20 Hz notch filter. 

5.8 Effects of higher signal sampling frequencies 
 
Finite wordlength filter topology emulation has been conducted at the higher signal 

sampling frequencies of 96 and 192 kHz.  This section compares the resulting residual 

noise products at these sampling frequencies with the residual noise produced by 

topologies operating at 48 kHz (described in Section 5.4). As shown in Figure 5-2 there is 
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an increase of 12 dB in the pole transfer function gain for a doubling in sampling 

frequency (48 kHz to 96 kHz).  Figure 5-48 shows the DF1 output spectra using 24 bit 

fixed point arithmetic, operating at a sampling frequency of 96 kHz.  Figure 5-49 shows 

the DF1 output spectra using 24 bit double precision and 32 bit fixed point arithmetic, 

operating at a sampling frequency of 96 kHz.  All output spectra, excluding DF1 using dc 

error feedback, show the expected 12 dB increase in noise products compared to those 

shown for the 48 kHz sampling frequency, Figure 5-10 and Figure 5-12.  All DF1 floating 

point implementations at a sampling frequency of 96 kHz, produce increases of 12 dB in 

their noise products.  Table 5-1 shows the THD+N figures for all DF1 implementations 

operating at 48 and 96 kHz, for the 20 Hz notch filter. 
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Figure 5-48 DF1 output spectrum for 24 bit fixed point implementations operating at a sampling 
frequency of 96 kHz, 20 Hz notch filter, 7.5 Hz bandwidth. 
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Figure 5-49 DF1 output spectrum for 24 bit double precision and 32 bit fixed point implementations 
operating at a sampling frequency of 96 kHz, 20 Hz notch filter, 7.5 Hz bandwidth. 

 
 

DF1 implementation, 
20 Hz notch filter (width 7.5 Hz) 

48 kHz THD+N 
RMS figure (dBFS) 

96 kHz THD+N 
RMS figure (dBFS) 

Fixed point 24 bit truncation -41.5 - 29.4 
Fixed point 24 bit rounding -70.3 - 59.5 
Fixed point 32 bit truncation -89.6 - 77.6 
Fixed point 32 bit rounding -120.9 - 112.6 
Fixed point 24 bit double precision -193.2 - 181.7 
Fixed point 24 bit, dc error feedback -123.8 - 121.9 
Floating point 32 bit sign magnitude truncation -80.5 - 67.5 
Floating point 32 bit sign magnitude rounding -79.0 - 66.6 
Floating point 32 bit twos-complement truncation -48.9 - 37.8 
Floating point 32 bit twos-complement rounding -79.4 - 66.7 
Floating point 40 bit sign magnitude truncation -114.4 -101.9 
Floating point 40 bit sign magnitude rounding -115.9 -103.2 
Floating point 40 bit twos-complement truncation -82.4 -71.2 
Floating point 40 bit twos-complement rounding -97.6 -85.2 

Table 5-1 Total harmonic distortion plus noise figures (RMS) for DF1 implementations at 48 and 96 
kHz. 

 
Figure 5-50 shows the output spectra for DF2 and DF1T operating at a sampling 

frequency of 96 kHz, using a 32 bit floating point sign magnitude truncation 

implementation.  The filter used was the 30 Hz bell boost example.  Comparison with the 

equivalent 48 kHz measurements, Figure 5-22, shows approximately an increase of 12 dB 

in the noise components for the higher sampled filters.  Figure 5-51 shows the output 

spectra for the coupled forms, implemented in floating point at a sampling frequency of 96 
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kHz.  Comparison with the 48 kHz measurements, Figure 5-28, shows that the increase in 

noise components is less than 12 dB.  Coupled form THD+N figures for these outputs, are 

given below.  The relative THD+N increases, for a sampling frequency of 96 kHz 

compared to the 48 kHz, are shown in brackets. 

 Gold-Rader  - 94.9 dBFS  (3.6 dBFS) , 
 Kingsbury  - 99.9 dBFS  (5.7 dBFS) , 
 Zölzer  - 99.9 dBFS  (7.0 dBFS). 
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Figure 5-50 DF2 and DF1T output spectrum for 32 bit floating point implementations operating at a 
sampling frequency of 96 kHz, 30 Hz bell filter, Q of 3, gain 18 dB. 
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Figure 5-51 Coupled forms and DF1 output spectrum for 32 bit floating point implementations 
operating at a sampling frequency of 96 kHz, 20 Hz notch filter, 7.5 Hz bandwidth. 

 
Figure 5-52 shows the output spectra for the ladder topologies implementing the 30 Hz 

bell filter at a 96 kHz sampling frequency.  Comparison of Figure 5-52 and Figure 5-32 

suggests the 96 kHz implementation produces a noise increase of 3 dB in the tuned 

frequency region.  The rest of the noise spectrum is unaffected by the change of sampling 

frequency.  Consequently the increase in THD+N figures for 96 kHz operation are an 

increase of approximately 1 dB for both the Massie and Moorer ladder implementations.  

However the lattice implementation at a sampling frequency of 96 kHz produces a more 

pronounced noise increase in the tuned frequency region, compare Figure 5-53 and Figure 

5-33.  The resulting THD+N figure for Lattice (Massie) operating at 96 kHz is –122.3 

dBFS.  This is 10 dB higher than the figure using a 48 kHz sampling frequency. 
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Figure 5-52 Output spectra of ladder structures, using 32 bit floating point implementations operating 
at a sampling frequency of 96 kHz, 30 Hz bell filter, Q of 3 gain 18 dB. 

 
Figure 5-54 shows the output spectrum of the state-space structure, operating at a 

sampling frequency of 96 kHz, realising the 20 Hz notch filter example.  Comparison with 

Figure 5-30 shows that the increase in sampling frequency has no noticeable effects on the 

noise components in the output spectrum.  This is substantiated by the THD+N figures. 

For the three traces shown in the figures, for 32 bit, 40 bit truncation and 32 bit rounding, 

the THD+N figures produced at a sampling frequency of 96 kHz are within 0.5 dB of that 

produced at 48 kHz.  Note the THD+N figures for the 48 kHz sampling frequency are 

given in Section 5.4.6). 
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Figure 5-53 Output spectra of lattice structures, using 32 bit floating point implementations operating 
at a sampling frequency of 96 kHz, 30 Hz bell filter, Q of 3 gain 18 dB. 
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Figure 5-54 Output spectra of state-space structures, using 32 bit floating point implementations 
operating at a sampling frequency of 96 kHz, 30 Hz bell filter, Q of 3 gain 18 dB. 
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5.9 Discussion 
 
Direct form ‘zero before pole’ topologies produce poor noise performance when used to 

realise low frequency, high Q, notch filters.  The dc offsets in truncation noise in twos-

complement fixed and floating point arithmetic are greatly amplified in ‘zero before pole’ 

topologies.  This has the effect of producing large dc noise in DF1 and DF2T topologies.  

However, floating point sign magnitude truncation produces no dc offset, improving its dc 

noise performance.  For DF1 and DF2T, 32 bit floating point reduces noise components 

by 9 dB than that produced by 24 bit fixed point.  This is significant because both use 23 

fractional bits.  DF1 using fixed point 32 bit produces superior noise characteristics to 32 

bit floating point.  DF1 floating point 40 bit extended precision produces inferior noise 

performance to that of 32 and 24 bit (double precision) fixed point.  Floating point 

extended precision produces comparably poor noise performance since every 

multiplication and a majority of the accumulations introduce quantisation.  In fixed point 

implementation DF2T is inferior to DF1 - due to its multiple quantisation points.  

However in floating point implementation the DF2T is similar to DF1. 

Quantisation error transfer functions for ‘pole before zero’ topologies contain poles and 

zeros.  Thus, filters with gain (boost settings) produce worse case noise characteristics.  

Consequently under floating point implementation DF2 is a low noise topology.  

However, harmonic distortion components in floating point truncation schemes are 

subsequently noticeable and the use of rounding produces better THD+N figures.  DF1T 

has multiple quantisation points in single precision implementation, producing an increase 

in residual noise compared to the DF2.  However, the DF1T in 40 bit extended precision 

produces minimal pole path accumulation quantisation, since it sums the large magnitude 

‘pole paths’ prior to summing with the unity bound input.  Thus, if the DF2 pole paths are 

summed first, the extended precision performance of DF2 is similar to DF1T. 
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Coupled form floating point implementations of low frequency tuned filters improve on 

DF1 noise performance by 20 dB.  For high frequency tuned filters the DF1 produces a 6 

dB improvement over the coupled forms.  This agrees with the unscaled theoretical noise 

model in (Zölzer, 1991).  The state-space topology produces excellent quantisation noise 

performance, under floating point rounding. Using truncation reduces its noise 

performance by 6 dB (due to harmonic distortion).  The state-space topology implemented 

in 40 bit extended precision compares closely in noise performance to DF1 using 24 bit 

fixed point double precision.  The Cabot structure did not produce similar noise 

performance to the state-space topology as reported by Cabot, (1992).  In single precision 

floating point implementation the noise performance was found to be superior to DF1. 

The Moorer ladder implementation produces less quantisation noise than the Massie 

ladder implementation by approximately, 9 dB.  The lattice (Massie) produces more 

pronounced noise in the frequency boost region, producing a THD+N figure 7 dB worse 

than the ladder (Massie). 

Using low level stimuli, fixed point filters were shown to produce low noise modulation.  

Floating point filters were shown to produce noise modulation, due to the quantisation 

noise being proportional to the signal level.  DF2T in fixed point implementation was 

found to produce broad band quantisation noise at low level operation. Since its multiple 

quantisation points produce an uncorrelated overall noise characteristic.  Applying dither 

to the accumulator (prior to the single quantiser) of the DF1 was explored.  Applying 

dither to the DF1 in floating point implementations produced a much higher noise floor, 

comparable to the fixed point DF1.  For the fixed point DF1, the application of dither did 

prevent all correlated distortions with the input (harmonic and noise modulation).  

Although the DF2T appeared to be less sensitive to correlated distortion than the 

undithered DF1, the dithered DF1 produced a lower noise floor than DF2T. 
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Floating point sign magnitude truncation was shown to eliminate limit cycle behaviour.  

Floating point rounding produced limit cycles of negligible magnitudes.  Fixed point twos-

complement truncation produces less instances of limit cycle behaviour than fixed point 

rounding.  It was found that DF1 dc and Nyquist frequency error feedback schemes can 

promote high frequency limit cycles.  Using truncation, DF2T produces less instances of 

limit cycle behaviour than DF1.  Using rounding, DF2T produces more instances of limit 

cycle behaviour than DF1. 

Floating point 32 bit truncation is shown to produce aliased harmonic distortion 

components which are larger in magnitude than the noise floor produced by a fixed point 

24 bit truncator.  A filter using 32 bit floating point twos-complement truncation is found 

to produce even order IMD products that are above the filters noise floor and of the noise 

floor of a 24 bit fixed point filter. 

Direct Form noise figures increase by 12 dB for a doubling in sampling frequency.  

However the couple forms increase in noise figure is in the region of 6 dB.  A doubling in 

sampling frequency in the lattice (Massie) topology is found to produce a noise increase of 

10 dB.  The ladder (Massie) and state-space topologies THD+N figures increase by less 

than 1 dB for a doubling of sampling frequency. 
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6 Topology behaviour during coefficient update 
 
 
 
 
 
 
 
 
 
 
 

6.1 Introduction  
 
Discrete-time varying filters are capable of producing transient distortions (disturbances) 

at their output during real-time coefficient updates.  Parameter and coefficient 

interpolation techniques exist that reduce disturbance, at the cost of computational load.  

Mourjopoulos et al (1990) and Hanna (1994) attempt to minimise interpolation rates, 

without introducing audible distortion.  However this previous work has not provided an 

understanding of the disturbance mechanisms in each of the filter topologies.  The 

previous work does not specify current and target frequency response and input stimulus 

for worst case disturbance behaviour.  Furthermore no study, known to the author, has 

examined the effects of higher signal sampling frequencies on signal disturbance. 

This work emulates filter topologies under various coefficient update scenarios, using 

various input stimuli, in the Mathcad environment.  Initially this work investigates the 

disturbance behaviour of the various filter topologies under a step state change - using no 

interpolation.  The effects of current and target frequency response and input stimulus on 

disturbance behaviour at the filter output are examined.  The work studies the disturbance 

effects of existing parameter and coefficient interpolation schemes.  The effects of sub-

sampled interpolator rates and the disturbance effects of interpolation implemented in 

finite wordlength arithmetic are investigated.  Signal disturbance effects in filters 

operating at higher signal sampling frequencies are studied. 
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6.2 Time domain test environment for the observation of filter 
disturbance 

 
The Mathcad environment was used as a test environment to implement discrete-time 

varying filter topologies under various filter state changes.  No arithmetic quantisation 

functions were applied to the coefficients, state variables or arithmetic operations in the 

filter topology implementation.  This ensured that the numerical representation of the 

coefficients, the operating arithmetic and state variables was as high as possible. 

The discrete-time varying filter environment permits any coefficient to change every 

sample period.  This was achieved through the use of one-dimensional arrays, for each 

coefficient in each topology.  Each array entry represents the value of that coefficient in a 

sample instance of the test scenario.  The coefficient arrays were pre-calculated.  Snap-

shot filter state changes are implemented by changing a coefficient set at a particular 

instance in the array set.  Gradual interpolated coefficient data changes were implemented, 

using the coefficient and parameter interpolation schemes discussed in Chapter 2, Section 

2.6.  The time-varying filter topology implementations and interpolation algorithms used 

in this work are given in Appendix D. 

 It was found through informal listening tests, prior to the investigation, that many 

controlled filter changes, from one state to another did not always generate the same 

disturbance when the filter’s state changed back to the initial state.  Therefore each 

coefficient set contained two state changes, for example, state A to state B and then back 

from state B to state A.  Sufficient time periods were given between the state changes to 

allow the filter to reach steady state as to not produce confusing disturbances from the 

previous state change. 

Figure 6-1 shows the time domain representation of the frequency response state changes 

used through-out the tests.  On the 2520th sample in time the frequency response state 
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changes from state A to B.  On the 12600th sample in time the frequency response state 

changes from state B to A. 
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Figure 6-1  Time domain representation of the frequency response state changes A and B. 

 

6.2.1 Coefficient sensitivity issues 
 
The effects of finite wordlength coefficients on frequency response, vary for each filter 

topology, Chapter 2 Section 2.4.3.  If quantised coefficients are used in the disturbance 

tests described in this chapter, then each filter topology will potentially produce a different 

magnitude frequency response, making comparison difficult.  Furthermore finite 

wordlength coefficients typically produce a gain deviation at dc in the magnitude 

response.  Therefore step changes in level can occur during state changes.  This represents 

a step change distortion for filters designed to have unity gain at dc.  These step changes 

cause ringing, Figure 6-2.  This complicates the study of the actual disturbance effect due 

to the filter state change.  In order to avoid these additional disturbance effects, the 

coefficients used through-out the tests are not intentionally quantised.  However the 

coefficients are subjected to the intrinsic finite wordlength of Mathcad (Chapter 5, Section 

5.2.5). 
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Figure 6-2 DF1 disturbance response to a change in the tuned frequency of a unity gain filter - flat 
frequency response using coefficients quantised to 24 bits, dc excitation of 0.5. 

 
The effects of coefficient finite wordlength in Mathcad may still produce magnitude 

response distortions, for different filter topology implementations.  Therefore the step  

response of various filter topologies were assessed with the intention of revealing any 

differences in the topologies response due the finite wordlength of Mathcad.  For this test 

a fixed filter response was used (Butterworth high pass filter tuned to a frequency of 40 

Hz). 

The coupled forms (Gold-Rader, Kingsbury and Zölzer) pole responses, under step input 

excitation were compared to the direct form step input pole response.  The pole response 

difference between the direct form and the Gold-Rader and Zölzer structures are shown in 

Figure 6-3, Figure 6-4 respectively.  Note the Kingsbury and Zölzer structures produce 

extremely similar pole responses.  It is clear that the difference in pole response between 

the direct forms and coupled forms is extremely small.  There are no coefficient sensitivity 

issues in the zero transfer function implementations since the coupled forms and direct 

form use the same implementation.  The overall response difference of the Zölzer and the 

DF1, under step input excitation, is shown in Figure 6-5. 
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Figure 6-3 Difference in pole response of the DF1 and Gold-Rader implementations. For a 40 Hz high 
pass filter, Butterworth response. 
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Figure 6-4 Difference in pole response of the DF1 and Zolzer implementations. For a 40 Hz high pass 
filter, Butterworth response. 
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Figure 6-5 Difference in overall response of the DF1 and Zolzer implementations.  For a 40 Hz high 
pass filter, Butterworth response. 

 
The overall response difference between the Cabot and DF1 topologies, for the 40 Hz high 

pass filter, under a step input excitation, is shown in Figure 6-6.  It is clear that the 

response difference is extremely small.  Similar tests were conducted for the ladder, lattice 

and state-space structures.  The overall response differences were of the same magnitude 

as the examples shown.  This suggests that the coefficient finite wordlength constraints of 

Mathcad produce negligible changes in response for the various filter topologies. 
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Figure 6-6 Difference in overall response of the DF1 and Cabot implementations.  For a 40 Hz high 
pass filter, Butterworth response. 
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6.2.2 Input source 
 
Mourjopoulos et al (1990) states that filter disturbance magnitudes are dependent on the 

type of input stimulus and that sinusoidal inputs produce the most audible disturbances.  

However, white noise excitation naturally exercises the filter system in all spectral regions 

and is the preferred source input in (Moorer, 1999).  The use of a sinusoidal input stimulus 

can result in inconsistent results.  For example, minimal disturbances can result from the 

trough of the sinusoid coinciding with the actual filter state change.  This is a particular 

problem for low frequency sinusoids, where magnitude minima span many samples. 

However the benefits of sinusoidal excitations are that a precise frequency can be selected.  

This is useful for defining particular frequencies in which worst case disturbances exist, 

for example, in the maximum gain region of the pole transfer function.  Care was taken in 

placing the filter state change event in a sample region where peak magnitudes occurred  

in the sinusoidal excitation.  Through-out the work it has been found that a dc input 

excitation is useful in the examination of some filter disturbance scenarios.  It is important 

to note that all of the disturbance effects shown using dc input also occur using low 

frequency sinusoids.  However it was found impractical to use low frequency sinusoids 

owing to the considerable intervals of samples in the trough of the input excitation which 

create inconsistent results.  It is however obvious that high level dc is not a practical audio 

input signal.  Signal disturbances are proportional to the level of the input stimulus. The dc 

input excitation level used through-out this work is a magnitude of 0.5.  All sinusoidal 

excitations levels used in this work are –6 dBFS. 

 

6.3 Magnitude frequency responses for disturbance analysis 
 
There are many filter type changes and filter parameter changes that generate signal 

disturbance at the output of filters.  Through empirical tests and the examination of what 
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critical filter types and parameter changes may occur practically, the following filter 

change scenarios have been identified. 

 

6.3.1 Filter state change ‘Scenario 1’, bell filter frequency parameter 
change (unity gain) 

 
The filter state change introduced in ‘Scenario 1’ utilises one type of audio filter, the bell 

filter.  Both states have a gain setting of zero dB, resulting in both frequency responses 

being flat.  This scenario provides a state change test that does not, for any input, result in 

any steady state gain change.  The filter parameter settings for the two states A and B are, 

 
State A :  Fc =  10 kHz, Q = 8, Gain = 0 dB 

State B :  Fc = 100  Hz, Q = 8, Gain = 0 dB. 

 
The pole transfer functions for the two states are shown in Figure 6-7.  The zero transfer 

functions are shown in Figure 6-8. 
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Figure 6-7 Pole transfer functions for filter response change Scenario 1, states A and B. 
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Figure 6-8 Zero transfer functions for filter response change Scenario 1, states A and B. 
 

6.3.2 Filter state change ‘Scenario 2’, bell filter frequency parameter 
change (–10 dB gain) 

 
 
The filter state change introduced in ‘Scenario 2’ utilises one type of audio filter, the bell 

filter.  Both states have a gain setting of -10 dB and vary in tuned frequency.  The filter 

parameter settings for the two states A and B are, 

 
State A :  Fc =  10 kHz, Q = 8, Gain = -10dB 

State B :  Fc = 100  Hz, Q = 8, Gain = -10dB 

 
This test scenario simulates a common single frequency parameter control sweep.  The 

overall magnitude responses, for the two states are shown in Figure 6-9.  The pole transfer 

functions for the two states are shown in Figure 6-10.  The zero transfer functions are 

shown in Figure 6-11. 
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Figure 6-9 Overall magnitude response changes for filter response change Scenario 2, states A and B. 
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Figure 6-10 Pole transfer functions for filter response change Scenario 2, states A and B. 
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Figure 6-11 Zero transfer functions for filter response change Scenario 2, states A and B. 

 

6.3.3 Filter state change ‘Scenario 3’, low pass filter frequency 
parameter change 

 
The filter state change introduced in ‘Scenario 3’ utilises one type of audio filter, the 2nd 

order low pass filter (Butterworth response).  The –3 dB cut-off frequency is changed 

from 10 kHz to 100 Hz.  The filter parameter settings for the two states A and B are, 

 
State A :  Fc =  10 kHz, Q = 0.7071 

State B :  Fc =  100 Hz, Q = 0.7071. 

 
This test scenario produces a large gain change between states for high frequency input 

signals.  The overall magnitude responses, for the two states are shown in Figure 6-12.  

The pole transfer functions for the two states are shown in Figure 6-13.  The zero transfer 

functions are shown in Figure 6-14. 
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Figure 6-12 Overall magnitude response changes for filter response change Scenario 3, states A and B. 
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Figure 6-13 Pole transfer functions for filter response change Scenario 3, states A and B. 
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Figure 6-14 Zero transfer functions for filter response change Scenario 3, states A and B. 

 

6.3.4 Filter state change ‘Scenario 4’, low to high pass filter type 
change 

 
The filter state change introduced in ‘Scenario 4’ utilises two types of audio filter, the 2nd 

order Butterworth Low and High Pass filter.  The tuned (–3dB cut-off) frequency is fixed 

to 100Hz for both types.  The filter parameter settings for the two states A and B are, 

 
State A :  Low pass, Fc = 100 Hz, Q = 0.7071 

State B :  High pass, Fc = 100 Hz, Q = 0.7071. 

 
This test scenario is particularly interesting filter type change, common in ‘cross-over’ 

filter configuration.  It also does not result in any change of the pole transfer function 

between the two states.  The overall magnitude responses, for the two states are shown in 

Figure 6-15.  The pole transfer functions for the two states are shown in Figure 6-16.  The 

zero transfer functions are shown in Figure 6-17. 
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Figure 6-15 Overall magnitude response changes for filter response change Scenario 4, states A and B. 

 

1 10 100 1 .103 1 .104 1 .105
50

16

18

52

86

120

State A PoleTransfer Function
State B PoleTransfer Function

frequency , Hz

ga
in

, d
B

 
Figure 6-16 Pole transfer functions for filter response change Scenario 4, states A and B. 
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Figure 6-17 Zero transfer functions for filter response change Scenario 4, states A and B. 

 

6.3.5 Filter state change ‘Scenario 5’, notch to low pass filter type 
change 

 
The filter state change introduced in ‘Scenario 5’ utilises two types of audio filter, the 2nd 

order notch and low pass filter (Butterworth response).  The tuned frequency is fixed to 

40Hz for both types.  The filter parameter settings for the two states A and B are, 

 
State A :  Notch , Fc = 40 Hz, Q = 0.7071 

State B :  High pass, Fc = 40 Hz, Q = 0.7071. 

 
This test scenario is of interest since it may be performed whilst configuring of a speaker 

system, where notch filters are employed to reduce acoustic resonances from a low 

frequency driver (bass driver).  The overall magnitude response, for the two states are 

shown in Figure 6-18.  The pole transfer functions for the two states are shown in Figure 

6-19.  The zero transfer functions are shown in Figure 6-20. 
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Figure 6-18 Overall magnitude response changes for filter response change Scenario 5, states A and B. 
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Figure 6-19 Pole transfer functions for filter response change Scenario 5, states A and B. 
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Figure 6-20 Zero transfer functions for filter response change Scenario 5, states A and B. 

 

6.4 Theory and analysis of DF 1 under a step state change 
 
The DF1 is a zero before pole topology, Figure 2-5.  Therefore the zero transfer function 

does not provide any attenuation of the pole response.  The pole transfer function 

implementation is fed by the filter output.  Therefore any magnitude change at the output 

will result in magnitude changes in state variables in the pole paths.  These magnitude 

changes can be considered as a step change to the pole transfer function and potentially 

generate signal disturbance.  The size of the disturbance is dependent on the size of the 

step change in the pole paths and the potential gain in the pole transfer function at that 

instance in time.  The following sub-sections of section 6.4, describe the disturbance 

behaviour of DF1 under the five test scenarios. 

 

6.4.1 Analysis of DF1 - Scenario 1 
 
No signal disturbance is evident at the output of DF1 for the Scenario 1 test.  This is the 

case for dc, white noise and 10 kHz sine inputs.  This is explained by unity gain response 

at all frequencies for both filter response states.  
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6.4.2 Analysis of DF1 - Scenario 2 
 
No signal disturbance occurs using a dc input stimulus, for the Scenario 2 state change 

test.  Both filter response states A and B exhibit unity gain at dc, Figure 6-9.  Therefore no 

step change in magnitude occurs at the output of the filter and consequently no step 

change occurs in the pole paths. 

Signal disturbance under filter state change disturbance is visible using a 10 kHz 

sinusoidal excitation, Figure 6-21.  Inspection of Figure 6-9, shows an overall magnitude 

response change between state A and B of 10 dB, at 10 kHz.  Therefore under 10 kHz sine 

excitation the pole paths are party to a step change of 10 dB between both state transitions 

(A to B and B to A).  The large disturbance from state change A to B can be attributed to 

the high gain in the target filter’s (state B) pole transfer function, Figure 6-10.  State A 

pole transfer function has much less gain than state B (Figure 6-10).  Therefore state 

change B to A does not produce significant disturbances, Figure 6-21. 

Figure 6-22 shows the signal disturbance at the DF1 output, using a white noise input 

excitation.  The disturbance is smaller than that caused by the 10 kHz tone.  This is 

because the 10 kHz sine excitation generates a larger step change at the filter output and 

than that caused by the noise excitation. 
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Figure 6-21 DF1 disturbance response to Scenario 2, using 10 kHz sine input excitation. 
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Figure 6-22 DF1 disturbance response to Scenario 2, using white noise input excitation. 

 

6.4.3 Analysis of DF1 - Scenario 3 
 
No disturbance occurs for the Scenario 3 filter response state change, using a dc input 

excitation.  Both states A and B exhibit unity gain at dc, Figure 6-12.  Using a 10 kHz sine 

input stimulus disturbances are produced on the transition from state A to B, Figure 6-23.  

This is due to the pole path disturbance being amplified by the state B pole transfer 

function.  The state B to A change does not cause a disturbance since the state A pole 

transfer function produces negligible gain, Figure 6-13. 
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Figure 6-23 DF1 disturbance response to Scenario 3, using 10 kHz sine input excitation. 

6.4.4 Analysis of DF1 - Scenario 4 
 
DF1 produces a small disturbance using a dc input excitation, Figure 6-24.  The state A 

magnitude response at dc is unity and for state B, theoretically zero.  However this 

disturbance is smaller than could be expected and is possibly explained by the constant 

pole transfer function.  Using a 10 kHz sine input stimulus the DF1 produces much larger 

amounts of disturbance on both state changes, Figure 6-25.  The notable difference is that 

the zero transfer function magnitude response at 10 kHz switches between –75 dB to 0 dB.  

The magnitude response at dc switches between –75 dB to - ∞ dB. 
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Figure 6-24 DF1 disturbance response to Scenario 4, using dc input excitation. 
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Figure 6-25 DF1 disturbance response to Scenario 4, using 10 kHz sine input excitation. 

 

6.4.5 Analysis of DF1 - Scenario 5 
 
Using a dc input, Scenario 5 produces no disturbance on either of the state transitions.  

Using a 10 kHz sine input stimulus, the DF1 produces large disturbances from state A to 

B, and from state B to A, Figure 6-26.  The signal disturbance at the frequency response 

state change A to B can be attributed to the large step change in output level at 10 kHz 

(Figure 6-18).  This step change in level excites the pole paths.  The state B pole transfer 

function supplies 103 dB gain in the pole frequency region, Figure 6-19.  The signal 
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disturbance at the frequency response state B to A can be attributed to the same large step 

change from unity output to a low level output at 10 kHz.  This step change excites the 

state A pole transfer function. The state A pole transfer function supplies 80dB of gain in 

the pole frequency region. 
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Figure 6-26 DF1 disturbance response to Scenario 5, using 10 kHz sine input excitation. 

 

6.5 Theory and analysis of DF2 under a step state change 
 
The DF2 topology, Figure 2-8, is a pole before zero topology, where the input excitation 

directly feeds the pole transfer function implementation.  The zero transfer function then 

operates on the intermediate result (pole output), producing the filter output.  Signal 

disturbance behaviour in DF2 therefore decomposes into the two mechanisms, the state 

change pole response under input excitation and the attenuation capabilities of the zero 

transfer function.  

 

6.5.1 Analysis of DF2 - Scenario 1 
 
No disturbance is generated under dc or 10 kHz input excitation. 
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6.5.2 Analysis of DF2 - Scenario 2 
 
Figure 6-27 shows the pole output response under dc input excitation, for the Scenario 2 

filter state change.  The pole output (intermediate result) can be seen to contain large 

amounts of ringing.  This can be attributed to the high gain in the state B pole transfer 

function, Figure 6-10.  The response change from state B to A also causes ringing, but is 

attributed to the large step change in pole gain to the state A response.  Under dc input 

there is a gain change of 75 dB in the pole transfer function between the two states.  The 

effects of the state A and B pole disturbances on the actual filter output differ greatly due 

to the zero transfer functions.  From state A to B the pole disturbance is greatly attenuated 

by the state B zero transfer function.  However, from state B to A the pole disturbance is 

not greatly attenuated by the state A zero transfer function.  Since the state A zero transfer 

function produces little rejection in the pole frequency region.  Figure 6-28 shows the 

resulting disturbances. 

Figure 6-29 shows the pole response using a 10 kHz sine input stimulus.  A substantially 

smaller magnitude disturbance occurs between states A to B than that caused by the dc 

input.  This can be explained by the much lower level of gain in the pole transfer function 

at 10 kHz, Figure 6-10.  Thus when the state change from A to B occurs there is 

substantially less energy in the pole paths – causing less disturbance at the filter state 

change.  Using a 10 kHz input stimulus, the B to A state change produces no disturbance, 

since the pole transfer function of A has no intrinsic gain to produce noticeable ringing. 

Figure 6-30 shows the resulting disturbances. 
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Figure 6-27 Direct Form pole response disturbance to Scenario 4, using dc input excitation. 
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Figure 6-28 DF2 disturbance response to Scenario 2, using dc input excitation. 
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Figure 6-29 Direct Form pole response disturbance to Scenario 2, using 10 kHz sine input excitation. 
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Figure 6-30 DF2 disturbance response to Scenario 2, using 10 kHz sine input excitation. 

 

6.5.3 Analysis of DF2 - Scenario 3 
 
Figure 6-31 shows the pole response to Scenario 3 test, under dc input stimulus.  

Magnitude changes at dc are large which produces large step changes in the pole response 

output.  The zero transfer function of state B offers proportionally large amounts of broad 

band attenuation, which suppresses the state A to B pole disturbance.  However the large 

pole response step change generated by state B to A is passed through zero transfer 

function state A, which is approximately flat at unity gain.  Therefore the pole response 
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disturbance from state B to A is not attenuated by the state A zero transfer function.  

Therefore a noticeable output disturbance occurs.  Using a 10 kHz sine input stimulus, the 

pole response between state A to B produces a relatively small disturbance, Figure 6-33.  

However this is also heavily attenuated by the state B zero transfer function, Figure 6-14.  

Using a 10 kHz input stimulus the state B to A pole response does not produce a 

disturbance, Figure 6-33.  Subsequently no disturbances occur at the output, Figure 6-34. 
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Figure 6-31 Direct Form pole response disturbance to Scenario 3, using dc input excitation. 
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Figure 6-32 DF2 disturbance response to Scenario 3, using dc input excitation. 
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Figure 6-33 Direct Form pole response disturbance to Scenario 3, using 10 kHz sine input excitation. 
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Figure 6-34 DF2 disturbance response to Scenario 3, using 10 kHz sine input excitation. 
 

6.5.4 Analysis of DF2 - Scenario 4 
 
DF2 does not produce any disturbance for dc or 10 kHz input stimulus.  The pole transfer 

function does not alter through-out the state changes, Figure 6-16.  Therefore no pole 

response disturbances are generated. 

6.5.5 Analysis of DF2 – Scenario 5 
 
There is no disturbance under dc or 10 kHz sine input stimulus.  Despite the pole transfer 

functions for both states have high peak gains.  The actual change in gain between the 
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state A and B pole transfer functions is relatively small.  This results in a high magnitude 

signal output at the pole output, but under state change the ringing is relatively small 

(ringing magnitude of 400).  The zero transfer functions for both states provide large 

attenuation in the pole frequency region, resulting in minimal disturbance. 

 

6.6 Direct Form transposed Forms reaction to step-change 
 
Topology diagrams for the transposed direct forms are shown in Figures 2-9 and 2-10.  

Coefficients are multiplied directly by the input or output and the unit delays operate on 

the products.  If the coefficients are static and arithmetic finite wordlength effects are 

ignored, a transposed topology is numerically identical to the direct form.  However the 

transposed topology applies a unit delay on the product, not on the input or output sample.  

This results in a ‘time offset’ if the coefficients vary with time.  This can be explained by 

Equation (6-1).  The equation is true, if a1i is constant for all instances of i.  Once the 

coefficients become time varying (a1i is not constant), Equation (6-1) is no longer true. 

 
( )

11 11
−− ⋅=⋅

iiiii xaxa . 

          (6-1)  

 
Further inspection of Figures 2-9 and 2-10, indicates that the actual transposed zero and 

pole transfer functions in the DF1T and DF2T are identical.  The simple difference 

between DF1T and DF2T is the ‘pole before zero’ and ‘zero before pole’ ordering.  

Therefore a useful technique used in the following two sections is to examine the actual 

transposed zero and pole transfer functions reaction to coefficient state change separately.  

This information can then be re-applied to the DF1T and DF2T to establish the overall 

disturbance effects. 
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6.6.1 Direct Form 1 Transposed 
 
The DF1T is a ‘pole before zero’ topology.  Therefore its filter state change disturbance 

behaviour is more similar to the DF2 topology.  For example, its disturbance response to 

Scenario 2, using a dc input excitation is similar to the DF2, Figure 6-28. 

However there are major disturbance differences, caused by the transposed nature of the 

zero and pole transfer functions.  Figure 6-35 shows the disturbance caused by DF1T 

Scenario 4, using a dc input excitation.  DF2 does not produce any disturbances under 

these conditions.  This is an interesting example, since the Scenario 4 test has a static pole 

transfer function.  The source of the disturbance is a relatively small disturbance in the 

zero path response, Figure 6-36. The large energy produced by the static high gain pole 

transfer function is injected into the transposed zero transfer function implementation.  

This results in an overall disturbance much larger than the zero transfer function 

disturbance.  The DF1T does not generate any disturbances for Scenario 4, using a 10 kHz 

input excitation.  This is similar to DF2. 
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Figure 6-35 DF1T disturbance response to Scenario 4, using dc input excitation. 
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Figure 6-36 Transposed Direct Form zero response disturbance to Scenario 4, using dc input 
excitation. 

 
The DF1T pole response disturbance to the Scenario 5 test is different to the DF2 pole 

response, Figure 6-37.  Figure 6-38 shows the large resulting disturbance at the output of 

DF1T, for the Scenario 5 test, using a dc input.  For this test example DF2 causes no 

disturbance. 
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Figure 6-37 Direct Form and Transposed Direct Form pole response disturbances to Scenario 5 using 
dc input excitation. 
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Figure 6-38 DF1T disturbance response to Scenario 5, using dc input excitation. 

 

6.6.2 Direct Form 2 Transposed  
 
DF2T produces a larger disturbance magnitude than DF1 for the Scenario 4 test, using a 

dc input excitation, Figure 6-39.  The disturbance can be attributed to the zero transfer 

function disturbance, shown in Figure 6-36.  The DF2T also produces a disturbance for 

the Scenario 5 state change test, using a dc input, Figure 6-40.  DF1 produced no 

disturbance for this test.  The DF2T disturbance for the Scenario 5 test is a product of the 

transposed pole transfer function disturbance, shown in Figure 6-37. 
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Figure 6-39 DF2T disturbance response to Scenario 4, using dc input excitation. 
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Figure 6-40 DF2T disturbance response to Scenario 5, using dc input excitation. 

 

6.6.3 Transposed topologies with delay compensated coefficients 
 
The previous two sections have shown some of the disturbances caused by the transposed 

zero and pole transfer function implementations.  As described earlier in this section, 

transposed disturbances are caused by applying the unit delay operator on the product - not 

the input or output sample instance.  The use of time varying coefficients results in a 

temporal misalignment between the coefficient variable and the input output data instance.  

This alters the effective transfer function for a few samples (depending on the filter order - 

number of delays in the transfer function).  It is possible to correct the coefficient 

misalignment through a coefficient delay compensation scheme.  By time shifting the 

coefficients by the inverse of the temporal mis-alignment, the transposed topologies 

disturbance behaviour is identical to the direct form.  For example, if the coefficients in 

the DF1 are delay compensated, as shown in Equation (6-2), the disturbance behaviour 

resembles DF2T.  If the DF2T uses a delay compensated coefficient set as shown in 

Expression (6-3) its disturbance behaviour matches that of DF1. If the DF1T uses a delay 

compensated coefficient set as shown in Expression (6-3) its disturbance behaviour 

matches that of DF2. 
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This coefficient delay compensation scheme was emulated, by applying the relevant delay 

compensation to the coefficient sets of the DF1T and DF2T.  Figure 6-41 shows the 

differences in disturbance response for the DF2 (using no coefficient compensation) and 

DF1T (with coefficient delay compensation) for the Scenario 4 test, using dc input.  

Figure 6-42 shows the disturbance difference of DF1 (no coefficient compensation) and 

DF2T (with coefficient delay compensation) for the Scenario 5 test, using dc input.  Both 

disturbance differences are negligible and within the noise boundaries of the simulation 

environment Mathcad (see Chapter 4). 

 
22112211 21210 −−−−−−−− ⋅+⋅+⋅+⋅+⋅= iiiiiiiiiii ybybxaxaxay  

 
          (6-2) 

 

 iiiii bbaaa 2,1,2,1,0 112 −−−  

          (6-3) 

 

2000 4000 6000 8000 1 .104 1.2 .104 1.4 .104

5 .10 12

0

5 .10 12

Output difference between DF2 and DF1T (coef compensated)
time, samples

m
ag

ni
tu

de

 

Figure 6-41 Difference in disturbance response for the DF2 and the DF1T (using coefficient delay 
compensation) for the Scenario 4 test, using a dc input excitation. 
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Figure 6-42 Difference in disturbance response for the DF1 and the DF2T (using coefficient delay 
compensation) for the Scenario 5 test, using a dc input excitation. 

 

6.7 Ladder and lattice structures 
 
The use of ladder and lattice allpass filters as sub-sections in audio equalisers is discussed 

in Section 2.5.7.  The lattice and ladder structures are ‘pole before zero’ (Figure 2-16 and 

Figure 2-17).  Two ladder implementations are considered in this work, Chapter 2, Section 

2.5.7.  The ladder with appended zeros, Figure 2-18, (Moorer structure) and the allpass 

ladder structure embedded in a gain network, Figure 2-17, (Massie structure).  The lattice 

is only considered as an allpass structure embedded in a gain structure (Massie, 1993). 

The first objective of this section is to show that both ladder implementations actually 

result in similar disturbance behaviour under coefficient state change.  Figure 6-43 shows 

the difference between the disturbances of the Massie and Moorer ladder implementations 

for the Scenario 2 test, using a dc input excitation.  The difference is essentially a small dc 

level shift - which causes some ringing.  It is clear that the resultant difference is 

negligible and within the internal noise boundaries of the Mathcad environment. 
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Figure 6-43 Difference in disturbance response for the two Massie and Moorer ladder 
implementations for the Scenario 2 test using a dc excitation. 

 
Using the Scenario 2 test with a 10 kHz sine input stimulus the ladder and lattice 

structures produce minimal disturbance, similar to the DF2 response (previously shown in 

Figure 6-30).  Figure 6-44 shows the disturbance produced by the lattice (Massie) for the 

Scenario 2 test, using a dc input excitation.  The lattice disturbance behaviour closely 

matches that of the DF2 topology, Figure 6-28. Figure 6-45 shows the disturbance 

produced by the ladder (Massie) for the Scenario 2, using a dc input excitation.  Due to the 

L2 scaling at each accumulator node, the ladder topology state variables are not large in 

magnitude.  Subsequently the ladder produces a smaller disturbance than the unscaled 

DF2 and lattice topologies.  Note, the state A to B disturbance shown in the ladder 

response, Figure 6-45, (in the sample region of 2500, on the time axis) is not visible, due 

to graph scale, on the DF2 and lattice disturbance plots. 

The ladder and lattice allpass output disturbances are actually larger in magnitude than the 

final structures output disturbance. This is because the surrounding gain elements 

attenuate the allpass output disturbance, for the example filter response shown. 
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Figure 6-44 Lattice (Massie) disturbance response to Scenario 2, using dc input excitation. 
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Figure 6-45 Ladder (Massie) disturbance response to Scenario 2, using dc input excitation. 
 

6.8 Coupled forms Gold-Rader, Kingsbury, Zölzer 
 
The Gold-Rader, Zölzer and Kingsbury topologies are introduced in Chapter 2, Section 

2.5.4.  These structures are ‘zero before pole’ topologies and will be closely compared to 

the DF1 topology.  Large disturbances were found to be produced in DF1 using the 

Scenario 5 test and is an interesting test scenario for the coupled forms.  Using a 10 kHz 

sine input stimulus, the three coupled forms all produce extremely similar disturbance 

characteristics to that of the DF1.  Figure 6-46 shows the disturbance similarities of the 
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DF1 and the coupled forms, for the Scenario 5 test, using a dc input excitation.  However, 

large disturbance differences are visible for dc input excitation, Figure 6-47.  The Zölzer 

and Kingsbury disturbances are similar and larger than the Gold-Rader disturbance.  The 

DF1 disturbance is minimal.  Figure 6-48 shows an example of coupled form disturbance 

differences, where the Zölzer disturbance is much larger than the other topologies.  

Coefficient correction schemes were explored with the objective of minimising the 

disturbance differences between the coupled forms and the DF1, under dc excitation.  No 

schemes were found to meet this objective.  It is suggested that the integrators in the 

Kingsbury and Zölzer structures are influential in the disturbance differences for dc 

excitation. 
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Figure 6-46 Coupled forms and DF1 disturbance responses for the Scenario 5 test, using 10 kHz input 
excitation. 
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Figure 6-47 Coupled forms and DF1 disturbance responses for the Scenario 5 test, using dc input 
excitation. 
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Figure 6-48 Coupled forms and DF1 disturbance responses for the Scenario 2 test, using dc input 
excitation. 

 

6.9 State-space hybrid (Cabot) structure 
 
The Cabot ‘state-space’ hybrid topology is introduced in Chapter 2 Section 2.5.6.  The 

structure is a ‘zero before pole’ topology and uses the direct form zero transfer function 
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implementation coupled with the state-space pole transfer function.  Using a 10 kHz sine 

input stimulus, the Cabot topology produces extremely similar disturbance characteristics 

to that of the DF1 and coupled forms, for the scenario 5 test.  The disturbance is very 

similar to the disturbance shown in Figure 6-46.  However like the coupled forms, larger 

disturbance differences become visible under dc input excitation, Figure 6-49.  Figure 

6-50 shows the disturbance for Scenario 2, dc input.  The disturbance is larger than that of 

DF1, but not as large as the coupled form disturbances, Figure 6-48.  It is suggested that 

the complex feedback paths in the pole transfer function implementation causes these 

disturbance differences for dc input excitation. 
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Figure 6-49 DF1 and Cabot structure disturbance responses for the Scenario 5 test, using dc input 
excitation. 
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Figure 6-50 DF1 and Cabot structure disturbance responses for the Scenario 2 test, using dc input 
excitation. 

 

6.10 State-space topology 
 
The state-space topology is introduced in Chapter 2 Section 2.5.5.  The pole transfer 

function is implemented in the middle of the topology.  The zero transfer function 

implementation is partly in parallel with the pole transfer function implementation.  The 

internal accumulation modes are scaled using the L2 norm.  Using a 10 kHz sine input 

stimulus, the topology produces negligible disturbance at the output.  The state-space 

topology is most susceptible to disturbance using low frequency input excitations with a 

similar disturbance behaviour to ‘pole before zero’ topologies. The state-space disturbance 

behaviour for the Scenario 2 test using a dc input excitation is shown in Figure 6-51.  This 

disturbance behaviour is similar to the ladder topology disturbance shown in Figure 6-45.  

The ladder and state-space topologies both use internal L2 scaling schemes, both 

producing a much smaller but similar disturbance characteristic to the unscaled DF2 and 

lattice topologies. 

The state-space topology also produces additional disturbance effects that do not occur in 

the DF2, ladder and lattice topologies.  Figure 6-52 shows the disturbance resulting from 
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the Scenario 5 test, using a dc input excitation.  It is clear that no noticeable disturbance 

occurs in the DF2.  This state-space disturbance is similar to the transposed pole path 

disturbance, and that of the overall disturbance produced by the DF2T, Figure 6-40. The 

state-space topology disturbance (Figure 6-52) using dc excitation, is also similar to the 

disturbance produced by the Zölzer and Kingsbury coupled form topologies under the 

same test parameters, Figure 6-47.  Coefficient alignment schemes were investigated but 

were found not to reduce the disturbance shown. 
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Figure 6-51 State-space structure disturbance response for the Scenario 2 test, using dc input 
excitation. 
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Figure 6-52 State-space structure disturbance response, for the Scenario 5 test, using dc input 
excitation. 

6.11 Common interpolation techniques to reduce step 
change disturbance 

 
This section aims to assess coefficient and parameter interpolators operating at the same 

sampling rate as the signal sampling frequency, 48 kHz.  A background into the 

fundamentals of interpolation schemes to reduce filter state change disturbances is given 

in Chapter 2 Section 2.6.  Coefficient and parameter interpolation techniques reduce filter 

state step change disturbances by decomposing the large step change into many smaller 

step changes.  Despite this large disturbance reduction, smaller disturbance artefacts are 

introduced into the filter system. 

Parameter interpolation cannot be used directly for scenarios that introduce non-

continuous parameter types between filter state changes.  Techniques exist that employ 

parameter interpolation for non-continuous parameter types (Zölzer, 1993) and are 

discussed in Chapter 2 Section 2.6.5.  The Scenario 2 filter state change uses continuous 

parameter types and can exploit standard parameter interpolation techniques.  Scenario 2 

was also found to produce large step change disturbances as described in the preceding 

sections of this chapter. 
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Figure 2-21 shows the linear, exponential, sinusoidal and parameter interpolation schemes 

operating on a filter coefficient.  Linear interpolation has a fixed rate of change and step-

size.  Exponential interpolation has its largest rate of change and step-size at the start of 

the interpolation period.  Sinusoidal interpolation has its largest rate of change and step-

size in the middle of the interpolation period.  Parameter interpolation has a rate of change 

that is dependent on the parameter control law (for example frequency controls are 

typically logarithmic) and the parameter to coefficient mapping. 

From the work described earlier in this chapter it is evident that any step change in a pole 

transfer function with high gain is potentially capable of generating a disturbance.  The 

various interpolators produce their largest step-size at different instances of time in the 

interpolator period and therefore on different intermediate transfer functions.  For this 

reason particular frequencies as sine input excitations may not highlight potential 

disturbance problems for a certain interpolator type.  For example, the use of a 10 kHz 

sinusoidal stimulus was shown to produce large disturbances for the Scenario 2, step state 

change.  Once interpolation is introduced, the Scenario 2 test does not produce its worst 

case disturbances using a 10 kHz sinusoidal input.  Furthermore a 2 kHz sinusoidal input 

stimulus produces a worst-case disturbance using interpolation operating at 48 kHz, for 

the Scenario 2 test.  This topic of input frequency, interpolator and resulting disturbance is 

discussed in the following sub sections. 

 

6.11.1 State change interpolation for DF1 
 
Figure 6-54 to Figure 6-56 show the DF1 disturbances generated by the four interpolation 

techniques for the Scenario 2 test, using a 2 kHz sine input stimulus.  The linear 

interpolation produces a noticeably larger disturbance than the other interpolation 

schemes. 
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Figure 6-53 DF1 disturbance response to Scenario 2, using linear interpolation, operating at 48 kHz, 
using a 2 kHz sine input excitation. 
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Figure 6-54 DF1 disturbance response to Scenario 2, using exponential interpolation, operating at 48 
kHz, using a 2 kHz sine input excitation. 
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Figure 6-55 DF1 disturbance response to Scenario 2, using sinusoidal interpolation, operating at 48 
kHz, using a 2 kHz sine input excitation. 
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Figure 6-56 DF1 disturbance response to Scenario 2, using parameter interpolation, operating at 48 
kHz, using a 2 kHz sine input excitation. 

 
Figure 6-57 shows an expanded view of the linear interpolation disturbance.  Marker X 

shows where the disturbance starts, sample 4975.  Marker Y is where the interpolation 

period ends and the coefficient becomes static at its final value, sample 5041.  It is clear 

that the disturbances start in the latter stages of the interpolation period.  The visible 

ringing in the linear interpolation disturbance is caused by the large step sizes at the end of 

the interpolation, Figure 6-58.  This acts as a disturbance excitation source for the high 

gain, final state B pole transfer function, see Figure 6-10.  Figure 6-59 shows the frozen-

time pole transfer functions using the intermediate linear interpolated coefficient sets at 

the sample instances X and Y.  It is clear that the changes in the pole transfer function are 

considerable at this point of the interpolation. 

Figure 6-54 shows the resulting disturbance for the exponential interpolator. The 

disturbance is noticeably smaller than that produced by the sinusoidal and linear 

interpolators.  Disturbances produced under exponential interpolation occur at the start of 

the interpolation period, Figure 6-54.  For the example shown the pole paths do not 

possess large amounts of gain at the start of the interpolation period, since the state A pole 

transfer function is much lower in gain than in state B, Figure 6-10. 
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The exponential interpolator produces the largest disturbance for the Scenario 5 test, using 

a 10 kHz input stimulus Figure 6-60.  The disturbance occurs at the start of the 

interpolation period where the step change is largest (sample region 2500), Figure 6-60.  

The input frequency of 10 kHz was empirically found to be the worst case frequency for 

this particular test.  This is attributable to the transfer function energy changes in the 10 

kHz region at the start of the interpolation period.  The Scenario 5, state A and B pole 

transfer functions are both similar high gain responses Figure 6-19.  The large steps, 

produced by the exponential interpolator at the start of the interpolation period, are 

subjected to high gain in the pole transfer function.  The Scenario 5 linear interpolation 

disturbance, Figure 6-53, is smaller than the exponential interpolator disturbance, Figure 

6-60, since the initial linear steps are smaller than the exponential steps. 

Using Scenario 2, sinusoidal interpolation generates disturbances in the latter half of the 

interpolation period, Figure 6-55.  Despite the largest steps being in the middle of the 

interpolation period, the disturbance occurs at the end of the interpolation period. This is 

due to the increasing gain in the pole transfer function towards the end of the interpolation 

period.  Parameter interpolation produces no noticeable disturbance effects, Figure 6-56. 

 

4600 4800 5000 5200 5400

1

0

1

Expanded view DF1 linear interpolation (48kHz sampling rate) 
time, samples

m
ag

ni
tu

de

X Y

 
Figure 6-57 Expanded time view of  Figure 6-53. 
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Figure 6-58 Final stages of an interpolation period for the various interpolation schemes. 
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Figure 6-59 Two frozen-time pole transfer functions of intermediate linear interpolated coefficient 
towards the end of the interpolation period (using the Scenario 2 test). 
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Figure 6-60 DF1 disturbance response to Scenario 5, using exponential interpolation, operating at 48 
kHz, using a 10 kHz sine input excitation. 

 

6.11.2 State change interpolation for DF2 
 
Worst case DF2 step change disturbances were caused by the Scenario 3 test.  Scenario 3 

uses continuous filter parameter types and parameter interpolation can be easily 

implemented.  Figure 6-61 to Figure 6-64 show the disturbances generated by Scenario 3, 

using a dc input excitation.  The interpolators greatly reduce the DF2 step-change 

disturbance, shown earlier in Figure 6-32.  The exponential interpolation produces the 

largest disturbance owing to the largest rate of change at the beginning of the state change 

B to A.  Linear interpolation produces the second largest disturbance, Figure 6-62.  The 

sinusoidal interpolation has a gradual rate of change at the start of the interpolation phase 

and consequently produces the smallest disturbance of the three coefficient interpolation 

techniques.  The parameter interpolation produces the smallest disturbance, owing to its 

rate of change at the start being much smaller than that of any of the other interpolation 

techniques.  The DF2 using the various coefficient interpolation schemes still produces 

disturbance peak magnitudes much greater than unity.  The parameter interpolation 

scheme produces a disturbance peak magnitude of less than unity.  This disturbance is of a 

similar magnitude to the DF1 disturbances using the coefficient interpolation schemes. 
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Figure 6-61 DF2 disturbance response to Scenario 3, using exponential interpolation, operating at 48 
kHz, using a dc input excitation. 
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Figure 6-62 DF2 disturbance response to Scenario 3, using linear interpolation, operating at 48 kHz, 
using a dc input excitation. 
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Figure 6-63 DF2 disturbance response to Scenario 3, using sinusoidal interpolation, operating at 48 
kHz, using a dc input excitation. 
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Figure 6-64 DF2 disturbance response to Scenario 3, using parameter interpolation, operating at 48 
kHz, using a dc input excitation. 

 

6.11.3 State change interpolation for other topologies 
 
Disturbance behaviour for the various other topologies using parameter and coefficient 

interpolation was studied.  The lattice structure produced similar disturbance behaviour to 

that of the DF2, discussed in the previous section.  Using parameter interpolation for the 

Scenario 2 state change test and interpolating at the signal sampling frequency (48 kHz) 

the couple forms, Cabot, ladder, state-space topologies all produced negligible 

disturbances.  Figure 6-65 shows the minimal disturbance at the output of the Zölzer 

structure implementing parameter interpolation for the Scenario 2 state change test, using 

a dc input excitation.  It is evident that the Zölzer structure Scenario 2 state change 

disturbance, Figure 6-48, is greatly reduced through parameter interpolation. 
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Figure 6-65 Zölzer disturbance response to Scenario 2, using parameter interpolation, operating at 48 
kHz, using a dc input excitation. 

 
The various topologies were implemented using coefficient interpolation schemes between 

response state changes.  Coefficient interpolation has been found to be problematic for 

some of the topologies.  Producing unstable intermediate coefficient sets.  For example, 

the Zölzer coupled forms produces a noticeably large disturbance instability using 

coefficient interpolation.  Linear and exponential interpolation schemes were studied and 

were both found to produce the large disturbance behaviour, shown in Figure 6-66. 
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Figure 6-66 Zölzer disturbance response to Scenario 2, using exponential interpolation, operating at 
48 kHz, using a dc input excitation. 
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The state-space topology was found to be most susceptible to instabilities using coefficient 

interpolation schemes.  The worst-case found was for the Scenario 5 state change test.  

Linear and exponential interpolation scheme were both found to produce instabilities.  An 

example of the instability during exponential coefficient interpolation, operating at 48 kHz 

is shown in Figure 6-67.  The ladder and Cabot and other coupled forms were found not to 

produce noticeable instabilities using coefficient interpolation schemes for the Scenario 2 

and 5 state change tests. 
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Figure 6-67 State-space disturbance response to Scenario 5, using exponential interpolation, operating 
at 48 kHz, using a dc input excitation. 

 

6.12 Sub-sampled interpolators 
 
It is common practice to sub-sample the interpolator with respect to the signal sampling 

frequency to reduce the computational load of the interpolator, Chapter 2 Section 2.6.6.  

Parameter interpolation is computationally exhaustive, involving a parameter to 

coefficient mapping every interpolation sample.  Linear and exponential interpolators 

incur a lower computational overhead, but due to finite signal processing resource, sub-

sampling is still common.  Sinusoidal interpolators are efficiently implemented through 

look-up tables and sub-sampling offers small resource savings, Chapter 2, Section 2.6.4.  
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The aim of this section is to explore the disturbances produced in sub-sampled linear, 

exponential and parameter interpolation. 

The sub-sampled interpolator still operates over the same fixed interpolation period since 

the control surface sampling interval is fixed (approximately 40 ms).  Therefore the sub-

sampled interpolator produces larger interpolation steps than an interpolator operating at 

the signal sampling frequency.  For example, if the interpolator operates at one hundredth 

of the signal sampling frequency the resulting step sizes will be one hundred times larger 

than that of an interpolator operating at the signal sampling frequency.  Figure 6-68 shows 

the sub-sampled interpolator schemes operating at a sub-sampling frequency of 480 Hz 

(one hundredth of the signal sampling frequency, 48 kHz).  The resulting step sizes are all 

one hundred times larger than the step-sizes discussed in Section 6.11 and shown in Figure 

6-58.  This increase in step-size potentially increases the disturbance magnitude. 
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Figure 6-68 Final stages of the interpolation period for the various sub-sampled interpolation schemes 
- interpolator sub-sampling rate of 480 Hz. 

 
An input sinusoid of 2 kHz was used in the last section to evaluate interpolators operating 

at a signal sampling frequency (48 kHz).  It was found through-out the sub-sampled 

interpolator experiments that the linear interpolator disturbance effects are sensitive to 

input excitation frequency.  For example, shifting the input excitation frequency from 



 Chapter 6 Topology behaviour during coefficient update 

 205 

2000 Hz to 2002 Hz produced a noticeable difference in the resulting disturbance.  It was 

also found that the parameter interpolator disturbance was also influenced by this slight 

change in input excitation frequency.  Despite this sensitivity to input frequency all 

disturbances were small, a typical disturbance shown in Figure 6-71.  It is suggested that 

the disturbance sensitivity to such small changes in frequency can only be attributed to the 

input magnitude at the instance in time of the step change. 

Disturbance observations of the sub-sampled interpolators, using the Scenario 2 test were 

conducted.  The exponential interpolator was found to be insensitive to the frequency of 

the input excitation and produced a fairly constant level of disturbance for this test, Figure 

6-69.  Figure 6-70 shows the noticeably larger disturbances produced by the sub-sampled 

linear interpolator compared to the linear interpolator operating at 48 kHz, Figure 6-53. 

Decreasing the interpolator sampling frequency to 240 Hz (200 times slower than the 

signal sampling frequency) produces some interesting results.  The linear interpolation 

step-size becomes so large that the intermediate frozen-time pole and zero transfer 

functions produce large errors and gain fluctuations in the overall response.  This results in 

large ringing disturbance once the interpolation period ends (ringing magnitudes of 400).  

This disturbance is larger than the step change disturbance (using no interpolation), Figure 

6-21. It was found that the exponential and parameter interpolation disturbances only 

increase slightly at the sampling frequencies of 240 Hz. 
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Figure 6-69 DF1 disturbance response to Scenario 2, using exponential interpolation, operating at 480 
Hz, using a 2002 Hz sine input excitation. 
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Figure 6-70 DF1 disturbance response to Scenario 2, using linear interpolation, operating at 480 Hz, 
using a 2002 Hz sine input excitation. 
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Figure 6-71 DF1 disturbance response to Scenario 2, using parameter interpolation, operating at 480 
Hz, using a 2002 Hz sine input excitation. 

 
Figure 6-72 shows the disturbance produced by the Zölzer structure using parameter 

interpolation sub-sampled at 480 Hz, one hundredth of the signal sampling frequency.  

The disturbance is noticeably worse than that of the DF1 parameter interpolation example, 

shown in Figure 6-71. This Kingsbury and Gold-Rader structures produced similar 

disturbances in that shown in Figure 6-72.  Further to this the coupled forms also produce 

noticeable disturbance effects using dc input exictation, Figure 6-73.  Note the DF1 does 

not produce any disturbance for this test example. 
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Figure 6-72 Zölzer disturbance response to Scenario 2, using parameter interpolation, operating at 
480 Hz, using a 2002 Hz sine input excitation. 
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Figure 6-73 Zölzer disturbance response to Scenario 2, using parameter interpolation, operating at 
480 Hz, using a dc input excitation. 

 
The Scenario 5 test was previously shown to produce noticeable disturbance for DF1 

using the exponential interpolator, Figure 6-60.  Figure 6-74 shows the resulting 

disturbance for the DF1 sub-sampled exponential interpolator operating at 4800 Hz.  The 

disturbance is considerably larger than the exponential interpolator operating at 48 kHz, 

Figure 6-60 indicating that the exponential interpolator disturbances are sensitive to sub-

sampling frequencies. 
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Figure 6-74 DF1 disturbance response to Scenario 5, using exponential interpolation, operating at 
4800 Hz, using a 10 kHz sine input excitation. 
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6.13 Interpolator finite wordlength issues and related 
disturbance effects 

 
The implementation of interpolator algorithms under finite wordlength arithmetic 

produces errors in the interpolated coefficients.  Since most interpolators are recursive, 

using the previous interpolated value, errors can accumulate, resulting in a final error at 

the end of the interpolation period.  For sensitive coefficients, filters with poles and zeros 

close to dc or the Nyquist frequency, any small error in a static coefficient set can have a 

large effect in the resulting pole zero positions on the z-plane and therefore the frequency 

response.  Since the interpolator must produce the exact final value coefficient, ‘clamping’ 

techniques are commonly used to detect that the interpolation period is finished or, in the 

case of the exponential ramp, that the steady state error has been reached.  Once these 

states have been detected the exact final value coefficient (target coefficient) can be placed 

directly into the interpolator system to eradicate any accumulated error in the coefficient.  

Therefore coefficient ‘clamping’ schemes are employed to correct any interpolator finite 

wordlength effects and frequency response errors.  A side effect of coefficient clamping 

are the potential step-changes at the end of the interpolation period, which have the 

potential to cause disturbance.  This section aims to implement the interpolator schemes 

under various forms of finite wordlength arithmetic.  The resulting finite wordlength 

errors and associated clamping errors will be examined.  Disturbance differences resulting 

from interpolator implementation under finite wordlength arithmetic will be examined. 

 

6.13.1 Linear interpolator finite wordlength effects 
 
A quantisation model for the linear interpolator is shown in Equation 6-4.  There are three 

sources of quantisation.  The fixed increment (step size, δ) quantised by the memory 

wordlength or the accumulator input wordlength.  Accumulation quantisation (Qacc), 

relevant to floating point arithmetic and quantisation due to the storage wordlength of cI. 
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δq Q δ( )

ci Q Qacc ci 1 δq  

         (6-4) 

 
Linear interpolation was implemented using the various fixed and floating point arithmetic 

functions, described in Chapter 4.  Floating point arithmetic was not found to produce a 

smaller final value error then fixed point arithmetic.  By representing the step size, δ, and 

state variables, cI , in 24 bit fixed point double precision (46 fractional bits) and 40 bit 

floating point extended precision (31 fractional bits), the final value error accumulated at 

the end of the interpolation is negligible compared to the step-size.  Implementing the 

linear interpolator in fixed or floating point, single precision, the final value error is of a 

similar magnitude to the step-size. A typical step size, δ, being in the region of 10-4 (for an 

interpolation period of 50ms at a 48 kHz sampling frequency), Equation (2-14).  Further 

inspection of linear interpolated coefficient sets shows that the final value errors range 

from fractions of the step-size magnitude to approximately double the typical step size, 

Figure 6-75.  The use of rounding, as opposed to truncation, was found to reduce the final 

error step by a factor of two.  However, the linear interpolation error is accumulative, 

rounding could produce coefficient data greater in magnitude than the ideal coefficient. 

Therefore the use of rounding in linear interpolation for extremity coefficient regions, for 

example 0.9999997, (1-2-23) could cause overflows and instabilities. 

The finite wordlength linear interpolator, using single precision fixed point arithmetic was 

used for a Scenario 2 test, using the DF1 with a 2 kHz sine input stimulus.  The resulting 

disturbance was very similar to the disturbance for the same test using the ideal 

interpolator, Figure 6-53.  The disturbance difference (the difference between the ideal 

interpolator and finite wordlength interpolator disturbances) is shown in Figure 6-76. 
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Figure 6-75 Finite wordlength effects on a linear interpolated coefficient, using single precision 24 bit 
fixed or 32 bit floating point arithmetic. 
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Figure 6-76 Difference in the DF1 disturbance response between an ideal linear interpolator and a 
linear interpolator, implemented in single precision 24 bit fixed point arithmetic (Scenario 2 test using 
a 2 kHz input excitation). 
 

6.13.2 Exponential interpolator finite wordlength effects 
 
There are several ways to implement the exponential interpolator algorithm. Three 

techniques, of similar computational efficiency, are shown in (6-5). 

 

  

ci ci 1 k target i ci 1
. A

ci ci 1 k ci 1
. k target i

. B

ci ci 1 1 k( ). k target i
. C   (6-5) 
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The three techniques were implemented using the finite wordlength emulation functions 

described in Chapter 4.  Figure 6-77 shows the finite wordlength effects of 24 bit single 

precision fixed point on the various exponential interpolators.  As the ‘current’ value 

coefficient tends towards the ‘target’ final value coefficient the step change gets 

exponentially smaller.  As the diminishing step-size tends to within the realms of the finite 

wordlength limits the current coefficient no longer changes and reaches, what is often 

termed, a steady state error.  The steady state error is dependent on the finite wordlength 

and the time constant, k.  For example, as k approaches unity (small time constant) the 

error approaches zero.  Thus the smaller k is, the larger the steady state error. 

Implementation C was found to produce a cyclic/hunting effect once the interpolator had 

been clamped at the final value.  This is due to quantisation destroying the relationship 

between the coefficients, k and 1-k, resulting in non-static behaviour after the interpolator 

reaches the clamped target value.  Implementation C was therefore not favoured.  

Implementations A and B produce near identical results with no cyclic/hunting effects.  

Implementation B was also implemented using a rounding quantiser for the final result ci .  

The rounding did produce the smallest final value error as shown in Figure 6-77.  

However finite wordlength exponential interpolation towards zero, behaves differently to 

interpolation towards one.  Truncation accelerates the interpolation towards zero, 

increasing the final step sizes and eliminating the steady state error and associated 

clamping step.  However, coefficients in pole transfer functions with high gain tend to 

have coefficient magnitudes approaching one or two (depending on scaling). 

Exponential interpolation was also implemented under both sign magnitude and twos- 

complement 32 bit single precision floating point arithmetic.  Both were found to produce 

the same final value errors.  It was found that the 32 bit single precision floating point 

steady state error was typically half of that produced through 24 bit single precision fixed 

point arithmetic. 
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The ideal exponential interpolator was compared to a 24 bit single precision fixed point 

implementation, using the Scenario 5 test.  The disturbance differences were small.  

However this does not represent a worst case test for the finite wordlength interpolator.  

The clamping error is at the end of the interpolation period.  The Scenario 5 test has large 

amounts of gain at the start of the interpolation period. 

Using the Scenario 2 test, the 24 bit single precision fixed point exponential interpolator 

also produces an extremely small difference in disturbance compared to the ideal 

interpolator, Figure 6-78.  It can be concluded that the finite wordlength effects of the 

exponential interpolator cause subtle differences in the disturbance at the end of the 

interpolation period.  These finite wordlength disturbance differences are small compared 

to the disturbances caused at the start of the exponential interpolation period in the 

Scenario 5 test. 
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Figure 6-77 Final stages of the interpolation period for various fixed point implementations of the 
exponential interpolator. 
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Figure 6-78 Difference in the DF1 disturbance response between an ideal exponential interpolator and 
an exponential interpolator implemented in single precision 24 bit fixed point arithmetic (Scenario 2 
test using a 2 kHz input excitation). 

 

6.13.3 Sinusoidal interpolator finite wordlength effects 
 
As discussed in Chapter 2, Section 2.6.4 sinusoidal interpolation is efficiently 

implemented through the use of a look-up table, which circumvents problems associated 

with finite wordlength.  Implementation of the sinusoidal interpolation using an on-line 

approximation is computationally intensive and is sensitive to quantisation effects.  

However a quantisation model for the algorithm suggested for sinusoidal interpolation in 

Chapter 2, Section 2.6.4 is given in Equation (6-6).  For the sampling rates and 

interpolation periods discussed in this work the value of ‘Const’ can typically be of the 

order of 10-10, see Section 2.6.4 .  Implementation in 24 bit single precision fixed point 

arithmetic results in the interpolator not operating.  Implementation in 24 bit double 

precision fixed point arithmetic produces an operable interpolator with minimal clamping 

error.  Implementation in 32 bit single precision floating point, produces an operating 

interpolator since the floating point arithmetic can efficiently represent ‘Const’ and 

variable ‘ddv’.  The clamping error in a sinusoidal interpolator implemented in 32 bit 

floating point arithmetic is shown in Figure 6-79.  The disturbance difference produced by 
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32 bit floating point sinusoidal interpolation as opposed to the ideal sinusoidal interpolator 

using the DF1 Scenario 2 test, with a 2 kHz sine input is shown in Figure 6-80.  The 

sinusoidal interpolator disturbance is mainly caused by the large steps in the middle of the 

interpolation period, Section 6.11.  Therefore the disturbances through the clamping error 

are minimal. 

 

   

vi Q vi 1 dvi 1

dvi Q dvi 1 ddv i 1

ddv i Q ddv i 1 Const

i MaximumSample∈for

vreturn  

         (6-6) 
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Figure 6-79 Final stages of the interpolation period, showing the clamping error, for a 32 bit floating 
point implementation of the sinusoidal interpolator. 
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Figure 6-80 Difference in the DF1 disturbance response between an ideal sinusoidal interpolator and a 
sinusoidal interpolator, implemented in single precision, 32 bit float point arithmetic (Scenario 2 test 
using a 2 kHz input excitation). 

 

6.13.4 Parameter interpolator finite wordlength effects 
 
The numerical precision of the parameter to coefficient mapping is assumed to be far 

greater than that of the coefficient wordlength to avoid the introduction of any static 

frequency response errors, see Section 2.4.2 .  Coefficient quantisation errors under a fixed 

point 24 bit wordlength are in the order of 10-7.  Coefficient quantisation is not likely to 

introduce any noticeable disturbance effects using parameter interpolation schemes, since 

the most sensitive coefficient steps through parameter interpolation are typically of the 

order of 10-6 (assuming filters tuned to low frequencies with respect to the sampling 

frequency).  Figure 6-81 shows the disturbance difference for an ideal parameter 

interpolator (using no coefficient quantisation functions) and a parameter interpolator 

passing its data through a 24 bit fixed point coefficient quantiser.  The test uses the 

Scenario 2 test, the DF1 topology, using a 2 kHz sine input stimulus, shown in Figure 

6-81.  The difference in disturbances is negligible. 
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Figure 6-81 Difference in the DF1 disturbance response between an ideal parameter interpolator and 
a parameter interpolator, quantised to 24 bits (Scenario 2 test using a 2 kHz input excitation). 

 

6.14 Disturbance effects at higher sampling frequencies 
 
This section examines the disturbance effects of time varying filters at the higher 

standardised sampling rates of 96 and 192 kHz.  Figure 6-10 displays the pole transfer 

functions for the Scenario 2 test, state A and B filters, at a sampling frequency of 48 kHz.  

The state B filter setting produces a maximum pole gain of approximately 83 dB, in the 

100 Hz region.  At a sampling frequency of 96 kHz the maximum peak pole gain for the 

same filter is 95 dB and at a sampling frequency of 192 kHz, the peak pole gain is 107 dB.  

This suggests the potential of larger magnitude disturbances for filter state changes 

operating at higher sampling frequencies.  This is corroborated by the pole transfer 

function response to the Scenario 2 step state changes, under dc input, operating at 192 

kHz, Figure 6-82.  The disturbance is sixteen times (24 dB) larger than that of the same 

test at a sampling frequency of 48 kHz, Figure 6-27. 

However, these pole response measurements are generated from dc inputs.  As discussed 

earlier in Section 6.4 the overall filter state change disturbance is not just dependent on 

pole path gain but also dependent on signal level changes feeding the pole paths.  The 

difference between adjacent sample instances for a 96 kHz sampling system is half that of 
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a 48 kHz sampled system (the rate of change between two samples is halved because the 

sampling frequency is doubled).  Thus a signal disturbance in a 96 kHz sampled system 

has half the magnitude effect at the accumulation of the pole path state variables of that in 

a 48 kHz sampled system.  This consequently has effects in the overall disturbance 

response.  This section also aims to examine finite wordlength effects of interpolators 

operating at higher sampling rates. 
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Figure 6-82 Direct Form pole response disturbance to Scenario 4, using dc input excitation operating 
at a sampling frequency of 192 kHz. 

 

6.14.1 DF1 at higher sampling frequencies 
 
Scenario 2 step state change observations were made, at a sampling frequency of 48 kHz 

for DF1 in Section 6.4.2, Figure 6-21, producing a peak to peak disturbance magnitude of 

approximately 37.  It was found that 10 kHz sine input excitation produced the maximum 

level change at the filter output and this subsequently resulted in the largest disturbance.  

Using the Scenario 2 test the DF1, operating a sampling frequency of 96 kHz, produces a 

peak to peak magnitude disturbance of 39.  Despite a 12 dB increase in pole gain for a 

doubling in sampling frequency (96 kHz), this is a similar disturbance to the same test 

conducted at a sampling frequency of 48 kHz. 
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However, it is not sensible to assume higher sampling rates cannot produce larger 

disturbances than systems sampling at 48 kHz.  The increase in the pole gain at the higher 

sampling frequencies can produce larger disturbances if the system excitation frequency is 

higher.  Furthermore systems operating at a higher sampling frequency have more signal 

bandwidth and accommodate higher frequency input signals. 

A modified 96 kHz, Scenario 2 test was conducted to illustrate this.  The input sinusoid 

was increased to 20 kHz.  In order to produce a 10 dB change in output magnitude, the 

state A filter was changed from a centre frequency of 10 kHz to 20 kHz.  It must be noted 

that the change of the state A centre frequency to 20 kHz does not increase the state A 

pole transfer function gain.  Figure 6-83 shows the results of the modified Scenario 2 test 

operating at a sampling frequency of 96 kHz.  The disturbance has a peak to peak 

magnitude disturbance of 79.  It must be noted that larger disturbances are also possible by 

increasing the input signal frequency in a 48 kHz sampled system.  The modified Scenario 

2 test operating at 48 kHz (state B centre frequency of 20kHz) with a 20 kHz input 

sinusoid produces a peak to peak disturbance of 57. 
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Figure 6-83 DF1 disturbance response to the modified Scenario 2 test, using 20 kHz sine input 
excitation, system operating at a sampling frequency of 96 kHz. 
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The disturbance effects for an exponential interpolator operating at a sampling frequency 

of 96 kHz were examined.  Worst-case disturbances using the exponential interpolator 

were previously found using the Scenario 5 test, Figure 6-60. Figure 6-84 shows the 

disturbance produced in the DF1 Scenario 5 test using an exponential interpolator 

implemented in 24 bit fixed point arithmetic, operating at a sampling frequency of 96 kHz.  

Comparison with the same test conducted at a sampling frequency of 48 kHz, Figure 6-60, 

shows that the increase in sampling frequency has not produced any noticeable increase in 

disturbance magnitude.  This suggests that finite wordlength effects on the exponential 

interpolator at a sampling frequency of 96 kHz does not increase disturbance magnitude. 

This is of interest since the increase in sampling frequency has effectively increased the 

clamping error and coefficient sensitivity. 

The disturbance produced for the Scenario 2 test linear interpolator implemented in 24 bit 

fixed point, operating at a sampling frequency of 96 kHz, is shown in Figure 6-85.  This 

disturbance is approximately thirty percent larger than the identical test operating at 48 

kHz, Figure 6-53.  It is suggested that this is due to the larger interpolation steps operating 

at the sampling frequency of 96 kHz. 
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Figure 6-84 DF1 disturbance response to Scenario 5, using exponential interpolation, implemented in 
24 bit fixed point, operating at 96 kHz, using a 10 kHz sine input excitation. 
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Figure 6-85 DF1 disturbance response to Scenario 5, using linear interpolation, implemented in 24 bit 
fixed point, operating at 96 kHz, using a 2 kHz sine input excitation. 

 

6.14.2 Other topologies at higher sampling frequencies 
 
The coupled form (Gold-Rader, Zolzer and Kingsbury) structures disturbance behaviour to 

state change were studied at the higher sampling frequencies.  Their disturbance 

magnitudes for the Scenario 5 test, using a dc input excitation, operating at a sampling 

frequency of 96 kHz, are shown in Figure 6-86.  Comparison of Figure 6-86 with the 

equivalent test at 48 kHz sampling frequency, Figure 6-47, shows that the disturbance 

magnitude decreases with an increase in sampling frequency.  It must be noted that this is 

under dc excitation, which is the worst-case signal for disturbance evaluation at higher 

sampling frequencies (due to the rate of change between samples for ac signals). 

The Cabot structure also produces a similar reduction in disturbance.  At a sampling 

frequency of 48 kHz the Scenario 5 test produces a peak to peak disturbance of 0.76, 

Figure 6-49.  The peak to peak disturbance magnitude is 0.68 for the same test at a 

sampling frequency of 96 kHz and 0.57 at 192 kHz. 

A doubling in sampling frequency in the lattice (Massie) and DF2 structures, using a dc 

input excitation, increases the peak to peak disturbance magnitude by approximately 40 
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percent.  However the ladder and state-space structures operating at a sampling frequency 

of 96 kHz, using a dc input excitation produce similar disturbance to ladder and state-

space structures operating at a sampling frequency of 48 kHz. 
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Figure 6-86 DF1 and coupled form disturbance responses to Scenario 5 state change test, operating at 
96 kHz, using a dc input excitation. 

 

6.15 Discussion 
 
It is evident that signal disturbances are caused by magnitude changes at the DF1 output – 

the source of the pole paths.  Critical disturbances occur in instances of high gain in the 

target pole transfer function (typically low frequency high Q filters).  State change 

scenarios 2, 4 and 5 are shown to produce large disturbances (peak disturbance 

magnitudes in the region of 80). 

‘Pole before zero’ topologies, for example DF2, produce larger disturbances.  Scenario 3 

produce peak disturbance magnitudes of 2000.  DF2 disturbances are caused by gain 

changes in the pole transfer function, producing ringing at the pole output.  The pole 

response ringing may be attenuated by the zero transfer function depending on subsequent 
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zero transfer function attenuation characteristics.  Large pole gain changes occur between 

low and high frequency tuned filters.  Where dc excitation causes maximum pole 

disturbance and a high frequency tuned target response, provides minimal attenuation in 

the zero transfer function. 

DF1T is a ‘pole before zero’ topology, producing similar disturbance behaviour to DF2.  

DF2T is a ‘zero before pole’ topology, producing similar disturbance behaviour to DF1.  It 

is shown that unstable coefficient sets occur under time varying conditions in transposed 

forms.  This can result in large spike disturbances.  A coefficient delay compensation 

scheme is developed to re-align the coefficients in the transposed topologies.  The 

resulting disturbance behaviour of DF1T and DF2T using the compensation scheme is 

identical to DF2 and DF1 respectively. 

The coupled forms (Gold-Rader, Kingsbury, Zölzer) produce similar disturbances to DF1 

for the five scenario tests, for a 10 kHz input stimulus.  However using a dc input the 

coupled forms produce large disturbances, whereas the DF1 produces negligible 

disturbance.  Kingsbury and Zölzer topologies produce the largest disturbances under dc 

input.  This is thought to be attributable to the integrators in their pole transfer function 

implementations. 

The lattice are ‘pole before zero’, producing similar disturbance responses to DF2.  Ladder 

implementations (Moorer and Massie) are found to produce similar disturbance responses.  

However the ladders accumulator L2 scaling reduces its disturbance peak magnitudes by a 

factor of 400, compared to DF2.  The lattice has unbounded nodes and produces state 

change disturbances of the same magnitude as DF2.  The state-space topology was found 

to produce similar disturbance behaviour to the ladder structures. However, using dc 

excitation the state-space topology produces similar disturbances to the Zölzer and 

Kingsbury topologies.  The Cabot structure produces similar disturbances to the Gold-

Rader topology. 
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State change disturbance reduction through coefficient and parameter interpolation 

schemes is examined.  Linear coefficient interpolation produces a continuously large step 

increment and is most susceptible to disturbance.  A pole transfer function producing high 

gain at any instance in time is likely to be excited by this increment.  Exponential 

interpolation produces the largest step-size of the schemes, at the beginning of the 

interpolation period.  This large step coincides with the initial high gain pole transfer 

function in the Scenario 5 test, producing a critical disturbance.  However exponential and 

sinusoidal interpolation appeared to be produce less signal disturbance than linear 

interpolation.  Parameter interpolation produced the best disturbance rejection.  Using 

parameter interpolation, operating at 48 kHz, the DF1 was found to produce minimal 

signal disturbances.  Parameter interpolation reduces the DF2 state change disturbance 

(peak magnitude of 2000) to a peak magnitude of 0.7.  The DF2 state change disturbance 

is also greatly reduced by the coefficient interpolation schemes.  However the resulting 

DF2 peak magnitude disturbances for all of the coefficient interpolation schemes are still 

considerably larger than unity (worst case peak magnitude of 70).  Coefficient 

interpolation schemes did however generate large disturbances in the Zölzer and state-

space topologies, due to intermediate coefficient sets producing instability.  Whereas 

parameter interpolation evidently cannot produce unstable coefficient sets. 

Sub-sampled interpolators, operating one tenth and one hundredth of the signal sampling 

frequency, 48 kHz, produced noticeably larger disturbances.  In particular the exponential 

interpolator operating a 4800 Hz produced disturbances over ten times the magnitude of 

the 48 kHz interpolator disturbances.  The finite wordlength effects of the interpolation 

schemes were investigated.  Final value ‘clamping ‘ errors at the end of the interpolation 

periods were found to produce negligible differences in the disturbance behaviour. 

Disturbance behaviour of filters at higher signal sampling frequencies were examined.  It 

is shown doubling the sampling frequency increases the direct form pole transfer function 
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gain by 12 dB.  However the doubling of the sample frequency, halves the magnitude 

changes between adjacent samples and thus half the amount of energy change in the pole 

paths.  Using identical test parameters for a 48 kHz and 96 kHz sampling filter, the 

resulting disturbance magnitudes are the same.  However if the input excitation frequency 

is also doubled then the DF1 disturbances are considerably larger at a sampling frequency 

of 96 kHz.  Coupled forms and the Cabot structure produce smaller disturbance 

magnitudes for an increase in sampling frequency, under dc input excitation.  The lattice 

and DF2 structures produce increases in disturbance magnitude for an increase in 

sampling frequency, under dc input excitation.  The ladder and state-space disturbance 

response appear to be insensitive to sampling frequency, producing the same disturbance 

magnitude at 96 kHz that was produced at a 48 kHz sampling frequency. 
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7 Review, future work and conclusions 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter gives a review of the three main topics in this work, namely, coefficient 

calculation, topology behaviour under finite wordlength arithmetic and topology 

behaviour during coefficient update.  Future work is also suggested and conclusions of the 

project are given. 

 

7.1 Review 

7.1.1 Techniques for calculating digital equaliser coefficients 
 
The work described in Chapter 3 is an investigation of coefficient calculation schemes for 

discrete-time audio equalisers.  The aim of the work was to minimise filter response 

distortion and increase computational efficiency for on-line implementation.  Magnitude 

and phase response distortions for BZT and MZT–based filters were examined.  Offset 

response distortions in the MZT-based filters have been identified and offset correction 

schemes developed for the LF, HF shelving and bell filters.  Image response distortions 

(excessive peak gain) are found in the MZT-based bell filter.  Correction schemes were 

developed to improve the MZT bell filter image response distortion.  It is shown that pre-

warping the peak gain in the MZT improves the magnitude frequency response with a 

relatively affordable increase in transform computation.  It is also shown that for high 

frequency tuned filters the stability and noise characteristics of the MZT-based filter is 

superior to that of a BZT-based filter.  This is even true for a flat (unity gain) filter. 
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Filter response distortions using existing BZT pre-warping techniques at a sampling 

frequency of 48 kHz were investigated.  BZT-based LF shelving filters produce negligible 

response distortion and are computationally efficient.  BZT pre-warping techniques 

produce large response distortions in HF shelving filters.  Prewarping Fc and Q is found to 

be the optimal BZT technique for the bell filter.  However, prewarping Fc is found to be 

the optimal BZT technique for LPF and HPF. 

MZT-based bell, LF and HF shelving filters have been shown to produce less response 

distortion than any of the BZT techniques at sampling frequencies of 48 kHz, 96 kHz and 

192 kHz.  However, the response distortions are considerably smaller at the higher 

sampling frequencies.  At sampling frequencies of 96 and 192 kHz, it was found that the 

MZT pre-warped peak gain technique is redundant and the MZT (with offset scaling) is 

sufficient since there is no significant overshoot in the peak gain. At a sampling frequency 

of 96 kHz the BZT (pre-warped Fc/Q) response distortions are extremely small.  At a 

sampling frequency of 192 kHz the BZT (pre-warping Fc/Q) and MZT (with offset 

scaling) response distortions are negligible furthermore the BZT (without pre-warping) 

could be used, reducing the computational load considerably.  However, the bell filter 

response error at a sampling frequency of 96 kHz for the BZT (no pre-warping) is 

considerable. 

The high frequency magnitude and group delay/phase errors discussed in this work are 

small, where the ear is less sensitive to distortion, (Everest, 1994).  It has not been an 

objective of this work to assess audible perception of magnitude and phase distortions.  

However, this is an important task and is described in the section of future work. 

The work has produced an analytical account of the response distortions and 

computational efficiency for the various MZT and BZT schemes for filters operating at 

sampling frequencies of 48, 96 and 192 kHz.  This is significant in the understanding of 

the performance of these coefficient calculation schemes.  Further, the work has led to the 
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development of techniques to improve the MZT response distortion.  It has been 

demonstrated that MZT shelving and bell filters can approximate more closely to their s-

plane parents than BZT-based filters.  This part of the project has led to a conference 

paper, (Clark et al, 1996) and has been published as a journal paper, (Clark et al, 2000), 

included in Appendix E. 

 

7.1.2 Topology behaviour under finite wordlength arithmetic  
 
In Chapter 5 the investigation into the behaviour of static frequency response filter 

topologies under various forms of finite wordlength arithmetic is described.  The aim of 

the work was to assess the noise behaviour of filter topologies under finite wordlength 

constraints, using various input stimuli, operating at sampling frequencies of 48, 96 and 

192 kHz. 

Direct form ‘zero before pole’ topologies produce poor noise performance realising filter 

responses with high pole gain (typically low frequency, high Q filters). The dc offsets 

produced in twos-complement truncation noise can be greatly amplified in ‘zero before 

pole’ topologies, producing poor noise characteristics.  However floating point sign 

magnitude truncation does not produce a dc offset, producing better dc noise performance 

in ‘zero before pole’ topologies.  For DF1 and DF2T topologies, 32 bit floating point 

arithmetic reduces noise components by only 9 dB than that produced by 24 bit fixed point 

arithmetic.  This is significant since both of these fixed and floating point formats use 23 

fractional bits.  It has been shown that the DF1 topology, using 32 bit fixed point, 

produces superior noise characteristics to 32 bit floating point.  Furthermore, the DF1 

topology using floating point 40 bit extended precision produces inferior noise 

performance compared to that of 32 and 24 bit (double precision) fixed point arithmetic.  

Floating point extended precision produces comparably poor noise performance since 

every multiplication and a majority of the accumulations introduce quantisation.  
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Furthermore, extended precision using truncation is limited by floating point harmonic 

distortion. Extended precision rounding produces notably better THD+N figures. 

Quantisation error transfer functions for ‘pole before zero’ topologies contain poles and 

zeros.  Thus, filters with gain (boost settings) produce worse case noise characteristics.  

Consequently, under floating point implementation DF2 is a low noise topology. 

Unfortunately, harmonic distortion components in floating point truncation are noticeable 

and can limit the THD+N noise performance of such topologies.  In these instances 

rounding is favourable to truncation.  Due to the multiple quantisation points in DF1T and 

DF2T topologies single precision implementations result in poor noise performance 

compared to DF2 and DF1 respectively.  However the DF1T topology, using 40 bit 

extended precision, produces a minimal pole path accumulation quantisation, since it sums 

the large magnitude ‘pole paths’ prior to summing with the unity bound input.  This can be 

emulated in the DF2 implementation.  If the pole paths are summed prior to summation 

with the input, the extended precision performance of DF2 is similar to DF1T. 

Coupled form floating point implementations of low frequency tuned filters improve on 

DF1 noise performance by 20 dB.  However for high frequency tuned filters the DF1 

produces a 6 dB improvement over the coupled forms.  The state-space topology produces 

excellent quantisation noise performance, using floating point rounding.  Using truncation 

reduces its noise performance by 6 dB (due to harmonic distortion components).  The 

state-space topology implemented in 40 bit extended precision compares closely in noise 

performance to the DF1 using 24 bit fixed point double precision.  The Cabot structure did 

not produce similar noise performance to the state-space topology as reported by Cabot, 

(1992).  However, in single precision floating point implementation the noise performance 

was found to be superior to DF1 and coupled forms.  The Moorer ladder implementation 

produces less quantisation noise than the Massie ladder implementation by approximately, 
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9 dB.  The lattice (Massie) produces more pronounced noise in the frequency boost region 

than the ladder (Massie). 

The emulation of filters under finite wordlength constraints, as opposed to theoretical 

noise models, has given the opportunity to study the effects of various input stimuli on 

topologies implemented in fixed and floating point.  At low input level fixed point filters 

were shown to produce low noise modulation.  Floating point filters were shown to 

produce noise modulation, due to the quantisation noise being proportional to the signal 

level.  DF2T in fixed point implementation was found to produce broad band quantisation 

noise at low level operation.  Since its multiple quantisation points produce an 

uncorrelated overall noise characteristic.  The application of triangular dither to the 

accumulator of DF1 in fixed point implementation was found to prevent any correlated 

distortions, at the cost of a slight increase in broad band noise.  Although DF2T produces 

minimal correlated distortion for low level inputs, its broad band noise floor is still higher 

than the dithered DF1 (in fixed point implementation).  In floating point implementation 

the dithered DF1 produced noise characteristics similar to the DF1 fixed point 

implementation. 

Zero input limit cycles were not produced in floating point sign magnitude truncation 

implementations.  Floating point rounding produced limit cycles of negligible magnitudes.  

Fixed point twos-complement truncation produces less instances of limit cycle behaviour 

than fixed point rounding.  It was found that error feedback schemes can promote high 

frequency limit cycles.  The number of rounding quantisers in the topology pole paths 

increases the possibility of limit cycle behaviour. 

High frequency stimuli of a floating point 32 bit truncator is shown to produce aliased 

harmonic distortion components.  These components are larger in magnitude than the flat 

noise floor produced by a fixed point 24 bit truncator.  A filter using 32 bit floating point 

twos-complement truncation is found to produce even order intermodulation distortion 
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products that are above the 32 bit filter noise floor and the noise floor of a 24 bit fixed 

point filter. 

It was found that higher sampling frequencies increase noise in the lattice and direct form 

topologies.  This is caused by an increase in gain in the pole transfer function.  However, 

coupled forms produce smaller increases in noise since their error transfer function are not 

as sensitive to sample frequency.  It was found that topologies using L2 norm scaling 

(state-space and ladder structures) have noise characteristics that are insensitive to 

increases in sampling frequency. 

This investigation has produced a knowledge base of topology noise performance in 

floating and fixed point arithmetic and an understanding of the noise characteristics of 

topologies operating at different sampling frequencies.  An outcome of this section of 

work was a conference paper, discussing optimal multiply accumulate wordlengths for 

various topologies (Clark et al, 1995), included in Appendix E.  The work also provided 

the basis for the design of equalisation algorithms in two commercial digital audio mixing 

systems (Allen & Heath DR series and the Icon digital mixer). 

 

7.1.3 Topology behaviour during coefficient update 
 
The aim of work described in Chapter 6 was to investigate the behaviour of various 

topologies under coefficient update using various input stimuli, filter settings and 

sampling frequencies. 

It is evident that magnitude changes at the DF1 topology output act as the disturbance 

excitation. This is because the output is the source to the pole paths of the topology.  

Critical disturbances occur in instances where high gain pole transfer functions exist in the 

target frequency response, typically low frequency high Q filters.  This behaviour is 

fundamental in ‘zero before pole’ topologies. 
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‘Pole before zero’ topologies (DF2 and lattice) produce large disturbances.  These 

disturbances are created by large gain changes in the pole transfer function.  However in 

some cases the disturbance is attenuated by the zero transfer function attenuation 

characteristics.  Large pole gain changes occur between low and high frequency tuned 

filters.  Where low frequency excitation causes maximum pole disturbance and a high 

frequency tuned target frequency response has minimal attenuation in the zero transfer 

function. 

DF1T is a ‘pole before zero’ topology, producing similar disturbance behaviour to DF2.  

DF2T is a ‘zero before pole’ topology, producing similar disturbance behaviour to DF1. 

Unstable coefficient sets occur under time varying conditions in transposed forms, 

resulting in large spike disturbances.  A coefficient delay compensation scheme is 

developed to re-align the coefficients in the transposed topologies.  The disturbance 

behaviour of DF1T and DF2T using coefficient delay compensation is identical to DF2 

and DF1 respectively.  Ladder implementations (Moorer and Massie) are found to produce 

similar disturbance responses.  The ladder is ‘pole before zero’ and has disturbance 

characteristics to DF2, however the L2 scaling greatly reduces its disturbance magnitudes.  

The lattice uses no scaling, resulting in similar disturbance magnitudes to DF2. 

Using high frequency stimuli the coupled forms produce similar disturbances to DF1.  

However the coupled forms, Cabot and state-space topologies produce large disturbances 

using dc input excitation.  The Kingsbury,  Zölzer and state-space topologies produce the 

largest disturbances, thought to be attributable to the integrators in their pole transfer 

function implementations.  

State change disturbance reduction through coefficient and parameter interpolation 

schemes is examined.  Linear coefficient interpolation produces a continuously large step 

increment and is the most likely interpolator to cause disturbance.  Despite large step-sizes 

initially in the interpolation period, the exponential interpolator produces small 
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disturbances. Using parameter interpolation operating at 48 kHz the DF1 produces 

negligible disturbances.  The large state change disturbances in DF2 are greatly reduced 

by all interpolation schemes.  Despite this, disturbances are still considerable – although 

small for parameter interpolation.  Coefficient interpolation schemes can cause 

instabilities in the Zölzer and state-space topologies causing large disturbances.  Parameter 

interpolation did not cause such instabilities. 

Sub-sampled interpolators, operating at one tenth and one hundredth of the signal 

sampling frequency, 48 kHz, produced noticeably larger disturbances.  The finite 

wordlength effects of the interpolation schemes were investigated.  Final value ‘clamping’ 

errors at the end of the interpolation periods were found to produce negligible differences 

in the disturbance behaviour. 

Disturbance behaviour of filters at higher signal sampling frequencies was examined.  It is 

shown doubling the sample frequency increases the direct form pole transfer function gain 

by 12 dB.  However, doubling the sample frequency, halves the magnitude changes 

between adjacent samples and thus halves the energy change in the pole paths.  Using 

identical test parameters for a filter operating at a sampling frequency of 48 kHz and 96 

kHz produces similar disturbance magnitudes.  However, if the input excitation frequency 

is also doubled then the DF1 disturbances are considerably larger at a sampling frequency 

of 96 kHz.  Coupled forms and the Cabot structure produce smaller disturbance 

magnitudes for an increase in sampling frequency.  The lattice and DF2 structures produce 

increases in disturbance magnitude for an increase in sampling frequency.  The ladder and 

state-space disturbance response appears to be insensitive to sampling frequency, 

producing the same disturbance magnitude at 96 kHz that was produced at a 48 kHz 

sampling frequency. 

Previous work (Mourjopoulos et al, 1990; Hanna, 1994) has attempted to optimise 

interpolation rates – to achieve minimal audible distortion.  However, previous work has 
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not provided an understanding of the disturbance mechanisms in each of the filter 

topologies or the effects of current and target frequency response and input stimuli.  

Furthermore, no study has been undertaken to examine the effects of higher signal 

sampling frequencies on disturbance.  This work contributes to the knowledge base on 

topology behaviour under coefficient update and specifically provides an analytical 

understanding of topology disturbance behaviour and what filter responses produce worst 

case signal disturbance in each of the topologies. 

The work also suggests that higher sampling frequencies may increase disturbance effects 

in some topologies for high frequency input stimuli.  It is interesting to note that at a 

sampling frequency of 96 kHz the ear is not sensitive to frequencies above 24 kHz.  

However, signals above 24 kHz are capable of producing large disturbance magnitudes in 

the filter.  This section of work has been instrumental in the development of coefficient 

change strategies in mixing systems currently in development. 

 

7.2 Future Work 
 
Work has been carried out to develop coefficient calculation schemes for minimal filter 

response distortion.  These distortions are of the form of high frequency magnitude and 

phase response errors with respect to the continuous time ideal response.  The audible 

perception of these distortions has not been studied in this work.  However, an 

investigation into auditory perception of high frequency magnitude and phase errors 

specifically in equalisers would be of interest.  This work would involve extensive 

listening tests of the magnitude and phase differences produced by discrete-time equaliser.  

This would ideally produce objective criteria, detailing what response distortions are 

audible. Such work would contribute to the debate of quality assessment of equalisers 

operating at higher sampling frequencies. 
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Distortion, noise and disturbance artefacts caused in the implementation of discrete-time 

equalisers is the main topic of this project.  The work has not used any performance 

benchmarks to assess these noise, distortion and disturbance artefacts.  Such benchmarks 

should consider these equaliser artefacts within the context of an entire audio mixing 

system.  A mixing system contains many equalisers, operating in parallel, each processing 

separate audio signals, which may or may not be correlated sources.  Ultimately these 

signals are processed and mixed together to form audio outputs – which are amplified and 

auditioned in many different audio playback scenarios.  An investigation to quantify 

auditory perception of these artefacts within the context of an active mixing system would 

be useful.  For example, overall system disturbance effects could be examined through the 

implementation of a multiple equaliser coefficient update scenario.  The work could 

examine noise and distortion products through the implementation of multiple equalisers 

using various multiple input stimuli.  The effects of sample frequency, arithmetic type and 

wordlength and coefficient update, on the entire system, would be studied.  The overall 

noise, distortion and disturbance behaviour of an entire mixing system could therefore be 

assessed.  This would be useful in specification of distortion and disturbance benchmarks 

for system design. 

 

7.3 Conclusions 
 
The primary aim of the project was to investigate distortions associated with the efficient 

implementation of discrete-time audio equalisers.  This involved the investigation of 

distortion and computational efficiency in coefficient calculation techniques; behaviour of 

filter topologies under finite wordlength arithmetic and the behaviour of filter topologies 

under coefficient change. Higher signal sampling frequencies facilitate lower frequency 

response distortion and more efficient coefficient calculation techniques.  The effects of 

signal sampling frequency on quantisation noise, distortion and state change disturbances 
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are topology dependent.  Some topologies are sensitive to the gain in the pole transfer 

function, producing poor noise performance and high sensitivity to sampling frequency.  

Some topologies have noise and disturbance characteristics that are insensitive to 

sampling frequency. 

Floating point arithmetic facilitates the use of many low noise topologies, eliminating 

overflow and low level limit cycles.  However floating point arithmetic, particularly using 

truncation, can produce linear and non-linear distortion artefacts not produced in fixed 

point arithmetic.  Rounding is a preferred quantiser in floating point systems.  Ultimately 

floating point extended precision is not superior to fixed point double precision.  Signal 

disturbance due to coefficient update is heavily dependent on frequency response and 

choice of input excitation.  Furthermore higher sampling frequencies can potentially 

increase signal disturbance effects. 
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Appendix A Arithmetic Functions and Test Data 
 
 
 
 
 
 
 
 
 
 
 
 
This appendix contains Mathcad functions, used for finite wordlength arithmetic emulation.  

The functions emulate the fractional quantisation that occurs in fixed and floating point 

arithmetic operations.  The basic quantisers (truncation and rounding) for fixed and floating 

point are listed.  Quantisers for sign magnitude and twos-complement binary coded data are 

given.  Floating point addition and multiplication functions are included. 
 

A.1 Arithmetic Functions 
 
A-1 sign magnitude truncation 

A-2 sign magnitude rounding 

A-3 twos-complement truncation 

A-4 twos-complement rounding 

A-5 floating point normaliser  

A-6 floating point sign magnitude truncation 

A-7 floating point sign magnitude rounding 

A-8 floating point twos-complement truncation 

A-9 floating point twos-complement rounding 

A-10 floating point addition sign magnitude truncation 

A-11 floating point addition sign magnitude rounding 

A-12 floating point addition twos-complement truncation 

A-13 floating point addition twos-complement rounding 

A-14 floating point multiplication sign magnitude truncation 

A-15 floating point multiplication sign magnitude rounding 

A-16 floating point multiplication twos-complement truncation 

A-17 floating point multiplication twos-complement rounding 
 
Notes, 
‘n’ denotes the number of fractional unsigned bits in the wordlength for all functions listed  

‘floatextprec’ denotes the number of fractional unsigned bits in the floating point arithmetic unit 

(product and accumulator registers). 
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smtrc x n,( ) floor x 2n. 2 n. x 0if

ceil x 2n. 2 n. otherwise  
        (A-1) 
 

smrnd x n,( ) floor x 2 n 1( )( ) 2n. 2 n. x 0if

ceil x 2 n 1( )( ) 2n. 2 n. otherwise  
 

        (A-2) 
 

twosCtrc x n,( ) floor x 2n. 2 n.
 

        (A-3) 
 
 

twosCrnd x n,( ) floor x 2 n 1( ) 2n. 2 n.
 

 
        (A-4) 
 
 

flnorm x( ) a x

0return a 0if

i 0

a a 2.

i i 1

ireturn a 1if

a 1<while

a a 0.5.

i i 1

ireturn a 2<if

a 2while

ireturn  
        (A-5) 
 

flsmtrc x n,( ) a x

i 0

xreturn x 0if

a a 2.

i i 1

a 1<while

a a 0.5.

i i 1

a 2while

out smtrc x n i,( )

outreturn   
        (A-6) 
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flsmrnd x n,( ) a x

i 0

xreturn x 0if

a a 2.

i i 1

a 1<while

a a 0.5.

i i 1

a 2while

out smrnd x n i,( )

outreturn
 

        (A-7) 
 
 

fl2ctrc x n,( ) a x

i 0

xreturn x 0if

a a 2.

i i 1

a 1<while

a a 0.5.

i i 1

a 2while

twosCtrc x n i,( )return
 

        (A-8) 
 
 

fl2crnd x n,( ) a x

i 0

xreturn x 0if

a a 2.

i i 1

a 1<while

a a 0.5.

i i 1

a 2while

twosCrnd x n i,( )return
 

        (A-9) 
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Addsmtrc a b,( ) aexp flnorm a( )

bexp flnorm b( )

cexp aexp aexp bexp>if

cexp bexp otherwise

amant flsmtrc a floatextprec,( ) 2 aexp.

bmant flsmtrc b floatextprec,( ) 2 bexp.

result bmant amant 2 bexp aexp( ). aexp bexp<if

result amant bmant 2 aexp bexp( ). otherwise

out flsmtrc result floatextprec,( )

out 2cexp.return  
        (A-10) 
 

Addsmrnd a b,( ) aexp flnorm a( )

bexp flnorm b( )

cexp aexp aexp bexp>if

cexp bexp otherwise

amant flsmrnd a 2 aexp. floatextprec,

bmant flsmrnd b 2 bexp. floatextprec,

result bmant amant 2 bexp aexp( ). aexp bexp<if

result amant bmant 2 aexp bexp( ). otherwise

out flsmrnd result floatextprec,( )

out 2cexp.return  
        (A-11) 
 

Add2ctrc a b,( ) aexp flnorm a( )

bexp flnorm b( )

cexp aexp aexp bexp>if

cexp bexp otherwise

amant fl2ctrc a floatextprec,( ) 2 aexp.

bmant fl2ctrc b floatextprec,( ) 2 bexp.

result bmant amant 2 bexp aexp( ). aexp bexp<if

result amant bmant 2 aexp bexp( ). otherwise

out fl2ctrc result floatextprec,( )

out 2cexp.return  
        (A-12) 
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Add2crnd a b,( ) aexp flnorm a( )

bexp flnorm b( )

cexp aexp aexp bexp>if

cexp bexp otherwise

amant fl2crnd a floatextprec,( ) 2 aexp.

bmant fl2crnd b floatextprec,( ) 2 bexp.

result bmant amant 2 bexp aexp( ). aexp bexp<if

result amant bmant 2 aexp bexp( ). otherwise

out fl2crnd result floatextprec,( )

out 2cexp.return  
      (A-13) 

 
 

Multsmtrc a b,( ) aexp flnorm a( )

bexp flnorm b( )

cexp aexp bexp

amant flsmtrc a 2 aexp. floatextprec,

bmant flsmtrc b 2 bexp. floatextprec,

cmant amant bmant.

flsmtrc cmant floatextprec,( ) 2cexp.return  
        (A-14) 
 

Multsmrnd a b,( ) aexp flnorm a( )

bexp flnorm b( )

cexp aexp bexp

amant flsmrnd a 2 aexp. floatextprec,

bmant flsmrnd b 2 bexp. floatextprec,

cmant amant bmant.

flsmrnd cmant floatextprec,( ) 2cexp.return  
        (A-15) 
 

Mult2ctrc a b,( ) aexp flnorm a( )

bexp flnorm b( )

cexp aexp bexp

amant fl2ctrc a 2 aexp. floatextprec,

bmant fl2ctrc b 2 bexp. floatextprec,

cmant amant bmant.

fl2ctrc cmant floatextprec,( ) 2cexp.return  
        (A-16) 
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Mult2crnd a b,( ) aexp flnorm a( )

bexp flnorm b( )

cexp aexp bexp

amant fl2crnd a 2 aexp. floatextprec,

bmant fl2crnd b 2 bexp. floatextprec,

cmant amant bmant.

fl2crnd cmant floatextprec,( ) 2cexp.return  
        (A-17) 
 

A.2 Comparison of DSP platform quantised data with 
Mathcad emulation 

 
The following assembly code generates 32 bit floating point truncation or rounding (23 

fractional bits) - .ROUND_ZERO or .ROUND_NEAREST select truncation or rounding.  

The code was executed on the ADSP-2106x DSP platform simulator.  The quantised data 

can be inspected in the disassembly window of the Visual DSP simulator, overleaf. 
 
/* Quant23.ASM         ADSP-2106x */ 
.PRECISION=32;     /* 23 fractional bits */ 
.ROUND_ZERO;  /* .ROUND_NEAREST; generates rounded data at 23 rd fractional bit */ 
start:         F1 =  0.0; 
  F2 =  2.123456789E-36; 
  F2 = -2.123456789E-36;  
  F3 =  1.192092895507813E-7; 
  F3 = -1.192092895507813E-7; 
  F4 =  5.960464477539063E-8; 
  F4 = -5.960464477539063E-8; 
  F5 =  0.12345432123456; 
  F5 = -0.12345432123456; 
  F6 =  0.49999988079071; 
  F6 = -0.49999988079071; 
  F7 =  0.499999940395355; 
  F7 = -0.499999940395355; 
  F8 =  0.99999988079071; 
  F8 = -0.99999988079071; 
  F1 =  0.999999940395355;  
  F1 = -0.999999940395355; 
  F2 =  1.00000011920929;  
  F2 = -1.00000011920929; 
  F3 =  1.00000005960464; 
  F3 = -1.00000005960464; 
  F4 =  1.23400011920929; 
  F4 = -1.23400011920929; 
  F5 =  1.23400005960464; 
  F5 = -1.23400005960464; 
  F6 =  1.99999988079071; 
  F6 = -1.99999988079071; 
  F7 = 2.00000005960464; 
  F7 =-2.00000005960464; 
  F8 = 8.50000011920929; 
  F8 =-8.50000011920929; 
  F1 = 16384.0000001788; 
  F1 =-16384.0000001788; 
  F2 = 31.6227766E+6; 
  F2 =-31.6227766E+6; 
  F3 = 3.16227766000001E+7; 
  F3 = -3.16227766000001E+7; 
end:            IDLE; 
 



                                     Appendix A 

 247 

 
 
Figure A-1 Quantised data (32 bit floating point truncation) generated in the Visual DSP simulator. 
 

 
 
Figure A-2 Quantised data (32 bit floating point rounding) generated in the Visual DSP simulator. 
 
Quantised data using the Mathcad emulated quantisation functions for 32 bit floating point 

(23 fractional bits) using sign magnitude truncation and rounding are shown overleaf.  The 

quantised emulated data is identical (bit exact) to the quantised data in the DSP platform 

simulator. 
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v 0.0
Qdata flsmtrc 0.0 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 0h=

v 2.123456789 10 36.
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 4h= IEEEFract Qdata( ) 34a4cbh=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 84h= IEEEFract Qdata( ) 34a4cbh=

v 1.192092895507813 10 7.
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 34h= IEEEFract Qdata( ) 0h=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0b4h= IEEEFract Qdata( ) 0h=

v 5.960464477539063 10 8.
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 33h= IEEEFract Qdata( ) 800000h=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0b3h= IEEEFract Qdata( ) 800000h=

v 0.12345432123456
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 3dh= IEEEFract Qdata( ) 0fcd59eh=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0bdh= IEEEFract Qdata( ) 0fcd59eh=

v 0.49999988079071
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 3eh= IEEEFract Qdata( ) 0fffffbh=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0beh= IEEEFract Qdata( ) 0fffffbh=

v 0.499999940395355
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 3eh= IEEEFract Qdata( ) 0fffffdh=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0beh= IEEEFract Qdata( ) 0fffffdh=

v 0.99999988079071
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 7ffffdh=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 7ffffdh=

v 0.999999940395355
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 7ffffeh=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 7ffffeh=

v 1.00000011920929
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 800001h=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 800001h=

v 1.00000005960464
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 800000h=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 800000h=

v 1.23400011920929
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 9df3b7h=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 9df3b7h=

v 1.23400005960464
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 9df3b6h=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 9df3b6h=

v 1.99999988079071
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 0fffffeh=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 0fffffeh=

v 2.00000005960464
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 40h= IEEEFract Qdata( ) 0h=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0c0h= IEEEFract Qdata( ) 0h=

v 8.50000011920929
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 41h= IEEEFract Qdata( ) 80000h=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0c1h= IEEEFract Qdata( ) 80000h=

v 16384.0000001788
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 46h= IEEEFract Qdata( ) 800000h=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0c6h= IEEEFract Qdata( ) 800000h=

v 31.6227766 106.
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 4bh= IEEEFract Qdata( ) 0f1433ch=
Qdata flsmtrc v 23,( ) IEEEExpo Qdata( ) 0cbh= IEEEFract Qdata( ) 0f1433ch=  
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v 0.0
Qdata flsmrnd 0.0 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 0h=

v 2.123456789 10 36.
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 4h= IEEEFract Qdata( ) 34a4cbh=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 84h= IEEEFract Qdata( ) 34a4cbh=

v 1.19209289550781310 7.
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 34h= IEEEFract Qdata( ) 0h=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0b4h= IEEEFract Qdata( ) 0h=

v 5.96046447753906310 8.
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 33h= IEEEFract Qdata( ) 800000h=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0b3h= IEEEFract Qdata( ) 800000h=

v 0.12345432123456
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 3dh= IEEEFract Qdata( ) 0fcd59fh=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0bdh= IEEEFract Qdata( ) 0fcd59fh=

v 0.49999988079071
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 3eh= IEEEFract Qdata( ) 0fffffch=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0beh= IEEEFract Qdata( ) 0fffffch=

v 0.499999940395355
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 3eh= IEEEFract Qdata( ) 0fffffeh=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0beh= IEEEFract Qdata( ) 0fffffeh=

v 0.99999988079071
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 7ffffeh=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 7ffffeh=

v 0.999999940395355
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 7fffffh=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 7fffffh=

v 1.00000011920929
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 800001h=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 800001h=

v 1.00000005960464
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 800000h=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 800000h=

v 1.23400011920929
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 9df3b7h=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 9df3b7h=

v 1.23400005960464
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 9df3b7h=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 9df3b7h=

v 1.99999988079071
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 0ffffffh=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0bfh= IEEEFract Qdata( ) 0ffffffh=

v 2.00000005960464
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 40h= IEEEFract Qdata( ) 0h=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0c0h= IEEEFract Qdata( ) 0h=

v 8.50000011920929
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 41h= IEEEFract Qdata( ) 80000h=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0c1h= IEEEFract Qdata( ) 80000h=

v 16384.0000001788
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 46h= IEEEFract Qdata( ) 800000h=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0c6h= IEEEFract Qdata( ) 800000h=

v 31.6227766 106.
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 4bh= IEEEFract Qdata( ) 0f1433ch=
Qdata flsmrnd v 23,( ) IEEEExpo Qdata( ) 0cbh= IEEEFract Qdata( ) 0f1433ch=  
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A.3 Comparison of DSP platform floating point addition with 
the Mathcad emulation 

 
The following assembly code performs various additions using 32 bit (23 fractional bits) 

floating point arithmetic, truncated or rounded data - .ROUND_ZERO or 

.ROUND_NEAREST selects the truncation or rounding for the constant data.  Arithmetic 

truncation or rounding is selected in the MODE1 register.  The code was executed on the 

ADSP-2106x DSP platform simulator. 
 
/*    AddTest.ASM         ADSP-2106x  */ 
 
#include "def21060.h"         /*  Memory Mapped IOP register definitions  */ 
.PRECISION=32; 
.ROUND_ZERO;     /* truncate constant data */ 
/* .ROUND_NEAREST;     round constant data */ 
start:         
/*  Mode 1 Register 
0001 0000 32 bit round 
0001 8000 32 bit truncate 
0000 0000 40 bit round 
0000 8000 40 bit truncate 
*/ 
BIT SET MODE1 0x00018000;  /* truncate, 32 bit arithmetic */ 
/* BIT SET MODE1 0x00010000;   round, 32 bit arithmetic */ 
 
 F8  =  31.6227766E+6; 
 F9  =  0.0; 
 F0  =  F8 + F9; 
 
 F8  =  31.6227766E+6; 
 F9  =  2.123456789E-36; 
 F1  =  F8 + F9; 
 
 F8  =  1.192092895507813E-7; 
 F9  =  5.960464477539063E-8; 
 F2  =  F8 + F9; 
 
 F8  =  1.192092895507813E-7; 
 F9  =  5.960464477539063E-8; 
 F3  =  F8 - F9; 
 
 F8  =  0.49999988079071; 
 F9  =  0.499999940395355; 
 F4  =  F8 - F9; 
 
 F8  =  0.49999988079071; 
 F9  =  1.99999988079071; 
 F5  =  F8 + F9; 
 
 F8  =  1.23400005960464; 
 F9  =  16384.0000001788; 
 F6  =  F8 + F9; 
 
 F8  =  8.50000011920929; 
 F9  =  31.6227766E+6; 
 F7  =  F8 - F9; 
 
end:            IDLE; 
 



                                     Appendix A 

 251 

 
 
Figure A-3 Floating point addition test data using 32 bit truncation, generated in the Visual DSP 
simulator. 
 

 
Figure A-4 Floating point addition test data using 32 bit rounding, generated in the Visual DSP 
simulator. 
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a 31.6227766106. b 0.0

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Addsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 4bh= IEEEFract Qdata( ) 0f1433ch=

a 31.6227766106. b 2.12345678910 36.

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Addsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 4bh= IEEEFract Qdata( ) 0f1433ch=

a 1.19209289550781310 7. b 5.96046447753906310 7.

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Addsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 35h= IEEEFract Qdata( ) 400000h=

a 0.49999988079071 b 0.499999940395355

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Addsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 7ffffch=

a 0.49999988079071 b 0.499999940395355

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Addsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 0b3h= IEEEFract Qdata( ) 800000h=

a 0.49999988079071 b 1.99999988079071

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Addsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 40h= IEEEFract Qdata( ) 1ffffeh=

a 1.23400005960464 b 16384.0000001788

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Addsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 46h= IEEEFract Qdata( ) 800277h=

a 8.50000011920929 b 31.6227766106.

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Addsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 4bh= IEEEFract Qdata( ) 0f14340h=  
 
 



                                     Appendix A 

 253 

a 31.6227766106. b 0.0

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Addsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 4bh= IEEEFract Qdata( ) 0f1433ch=

a 31.6227766106. b 2.12345678910 36.

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Addsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 4bh= IEEEFract Qdata( ) 0f1433ch=

a 1.19209289550781310 7. b 5.96046447753906310 7.

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Addsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 35h= IEEEFract Qdata( ) 400000h=

a 0.49999988079071 b 0.499999940395355

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Addsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 7ffffdh=

a 0.49999988079071 b 0.499999940395355

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Addsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 0b3h= IEEEFract Qdata( ) 800000h=

a 0.49999988079071 b 1.99999988079071

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Addsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 40h= IEEEFract Qdata( ) 1fffffh=

a 1.23400005960464 b 16384.0000001788

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Addsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 46h= IEEEFract Qdata( ) 800278h=

a 8.50000011920929 b 31.6227766106.

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Addsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 4bh= IEEEFract Qdata( ) 0f14340h=  
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A.4 Comparison of DSP platform floating point multiplication      
with the Mathcad emulation 

 
The following assembly code performs various multiplications using 32 bit (23 fractional 

bits) floating point arithmetic, truncated or rounded data - .ROUND_ZERO or 

.ROUND_NEAREST selects the truncation or rounding for the constant data.  Arithmetic 

truncation or rounding is selected in the MODE1 register.  The code was executed on the 

ADSP-2106x DSP platform simulator. 
 
/* MultTest.ASM         ADSP-2106x       */ 
#include "def21060.h"            /*  Memory Mapped IOP register definitions   */ 
.PRECISION=32; 
.ROUND_ZERO;     /* truncate constant data */ 
/* .ROUND_NEAREST;     round constant data */ 
 
start:         
/*  Mode 1 Register 
0001 0000 32 bit round 
0001 8000 32 bit truncate 
0000 0000 40 bit round 
0000 8000 40 bit truncate 
*/ 
BIT SET MODE1 0x00018000;  /* truncate, 32 bit arithmetic */ 
/* BIT SET MODE1 0x00010000;   round, 32 bit arithmetic */ 
 
 F8  =  31.6227766E+6; 
 F9  =  0.0; 
 F0  =  F8 * F9; 
 
 F8  =  31.6227766E+6; 
 F9  =  2.123456789E-36; 
 F1  =  F8 * F9; 
 
 F8  =  1.192092895507813E-7; 
 F9  =  5.960464477539063E-7; 
 F2  =  F8 * F9; 
 
 F8  =  0.49999988079071; 
 F9  =  0.499999940395355; 
 F3  =  F8 * F9; 
 
 F8  =  0.49999988079071; 
 F9  =  -0.499999940395355; 
 F4  =  F8 * F9; 
 
 F8  =  0.49999988079071; 
 F9  =  1.99999988079071; 
 F5  =  F8 * F9; 
 
 F8  =  1.23400005960464; 
 F9  =  16384.0000001788; 
 F6  =  F8 * F9; 
 
 F8  =  8.50000011920929; 
 F9  =  31.6227766E+6; 
 F7  =  F8 * F9; 
 
end:            IDLE; 
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Figure A-5 Floating point multiplication test data using 32 bit truncation, generated in the Visual DSP 
simulator.  
 
 

Fi
gure A-6 Floating point multiplication test data using 32 bit rounding, generated in the Visual DSP 
simulator. 
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a 31.6227766106. b 0.0

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Multsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 0h=

a 31.6227766106. b 2.12345678910 36.

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Multsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 10h= IEEEFract Qdata( ) 0aa3e94h=

a 1.19209289550781310 7. b 5.96046447753906310 7.

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Multsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 29h= IEEEFract Qdata( ) 0a00000h=

a 0.49999988079071 b 0.499999940395355

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Multsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 3eh= IEEEFract Qdata( ) 7ffff8h=

a 0.49999988079071 b 0.499999940395355

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Multsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 0beh= IEEEFract Qdata( ) 7ffff8h=

a 0.49999988079071 b 1.99999988079071

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Multsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 7ffff9h=

a 1.23400005960464 b 16384.0000001788

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Multsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 46h= IEEEFract Qdata( ) 9df3b6h=

a 8.50000011920929 b 31.6227766106.

Qa flsmtrc a 23,( ) Qb flsmtrc b 23,( )

Qdata Multsmtrc Qa Qb,( ) IEEEExpo Qdata( ) 4dh= IEEEFract Qdata( ) 802bb7h=  
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a 31.6227766106. b 0.0

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Multsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 0h=

a 31.6227766106. b 2.12345678910 36.

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Multsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 10h= IEEEFract Qdata( ) 0aa3e95h=

a 1.19209289550781310 7. b 5.96046447753906310 7.

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Multsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 29h= IEEEFract Qdata( ) 0a00000h=

a 0.49999988079071 b 0.499999940395355

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Multsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 3eh= IEEEFract Qdata( ) 7ffffah=

a 0.49999988079071 b 0.499999940395355

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Multsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 0beh= IEEEFract Qdata( ) 7ffffah=

a 0.49999988079071 b 1.99999988079071

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Multsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 3fh= IEEEFract Qdata( ) 7ffffbh=

a 1.23400005960464 b 16384.0000001788

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Multsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 46h= IEEEFract Qdata( ) 9df3b7h=

a 8.50000011920929 b 31.6227766106.

Qa flsmrnd a 23,( ) Qb flsmrnd b 23,( )

Qdata Multsmrnd Qa Qb,( ) IEEEExpo Qdata( ) 4dh= IEEEFract Qdata( ) 802bb8h=  
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Appendix B Finite wordlength topology functions 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix B lists the Mathcad functions implementing filter topologies using various forms 

of emulated finite wordlength arithmetic.  The various topologies are listed below.  The 

arithmetic type and precision used in each implementation is also listed. 
 
B-1 DF1, fixed point single precision, example uses a coefficient scaling of 2 

B-2 DF1, first order error feedback (inserting a zero at dc in the error transfer function) 

B-3 Floating point quantisation of input stimulus to n fractional bits 

B-4 DF1, floating point single precision 

B-5 DF2, floating point single precision 

B-6 DF2T, floating point single precision 

B-7 DF2T, fixed point single precision, example uses a coefficient scaling of 2 

B-8 DF1T, floating point single precision 

B-9 Gold-Rader, coupled form floating point single precision 

B-10 Kingsbury, coupled form floating point single precision 

B-11 Zölzer, coupled form floating point single precision 

B-12 Cabot (state-space hybrid), floating point single precision 

B-13 State-space structure, floating point single precision  

B-14 Ladder allpass, floating point single precision 

B-15 Ladder Moorer, floating point single precision 

B-16 Ladder Massie, floating point single precision 

B-17 Lattice allpass, floating point single precision 

B-18 Lattice Massie, floating point single precision 
 
where, 
 
S(x) performs single precision quantisation on data x. 

D(x) performs double precision quantisation on data x. 

Qm(x,n) performs floating point quantisation on data x, producing an n bit fractional wordlength in 

the mantissa. 
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yi S 2 D a0 xi
. D a1 xi 1

. D a2 xi 2
. D b1 yi 1

. D b2 yi 2
..

 
         (B-1) 
 
wi D a0 xi

. D a1 xi 1
. D a2 xi 2

. D b1 S wi 1
. D b2 S wi 2

. D wi 1 S wi 1

yi S wi  
         (B-2) 
 

xi Qm input i n,
       (B-3)   

 
yi Qm Add Add Add Add Mlt a0 xi, Mlt a1 xi 1,, Mlt a2 xi 2,, Mlt b1 yi 1,, Mlt b2 yi 2,, n,

         (B-4) 
 

DF2 k 1

w0 0

w1 0

k k 1

wk Qm Add Add xk Mlt b1 wk 1,, Mlt b2 wk 2,, n,

yk Qm Add Add Mlt a0 wk, Mlt a1 wk 1,, Mlt a2 wk 2,, n,

k MaximumSample<while

yreturn
 

         (B-5) 
 

DF2T k 1

p1 0

w1 0

k k 1

yk Qm Add Mlt xk a0, pk 1, n,

pk Qm Add Add Mlt xk a1, Mlt yk b1,, wk 1, n,

wk Qm Add Mlt xk a2, Mlt yk b2,, n,

k MaximumSample<while

yreturn
 

 
(B-6) 
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DF2T k 1

p1 0

w1 0

k k 1

yk S 2 D xk a0. pk 1
.

pk S D xk a1. D yk b1. wk 1

wk S D xk a2. D yk b2.

k MaximumSample<while

yreturn
  (B-7) 

 
          

DF1T k 1

w1 0

p1 0

q1 0

r1 0

s1 0

k k 1

wk Qm Add xk pk 1, n,

yk Qm Add Mlt a0 wk, rk 1, n,

pk Qm Add Mlt b1 wk, qk 1, n,

qk Qm Mlt b2 wk, n,

rk Qm Add Mlt a1 wk, sk 1, n,

sk Qm Mlt a2 wk, n,

k MaximumSample<while

yreturn
 

(B-8)  
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GoldRader k 1

radius b2

GRθ acos b1

2 b2.

rcos radius cos GRθ( ).

rsin radius sin GRθ( ).

y11 0

y21 0

y1 0

k k 1

zerok Add Mlt xk a0, Add Mlt xk 1 a1, Mlt xk 2 a2,,,

y1k Qm Add Add zerok Mlt y1k 1 rcos,, Mlt y2k 1 rsin,, n,

y2k Qm Add Mlt y1k 1 rsin, Mlt y2k 1 rcos,, n,

yk Qm Mlt y2k
1

rsin
, n,

k MaximumSample<while

yreturn  

         (B-9)  
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Kingsbury k 1

k1 1 b1 b2

k2 1 b2
k1

y11 0

y21 0

y31 0

y41 0

y1 0

k k 1

zerok Add Mlt xk a0, Add Mlt xk 1 a1, Mlt xk 2 a2,,,

y1k Add zerok Mlt y4k 1 k1,,

y2k Add y1k Qm y2k 1 n,,

y3k Qm Add y2k Mlt y4k 1 k2,, n,

y4k Qm Add Mlt y3k k1, y4k 1, n,

yk Qm Mlt y4k 1
1

k1
, n,

k MaximumSample<while

yreturn
  

(B-10)   

 

 

 
 
 



  Appendix B 

 263  

Zolzer k 1

z1 3 1 b1 b2

z2 1 b2
z1

y11 0

y21 0

y31 0

y41 0

y1 0

k k 1

zerok Add Mlt xk a0, Add Mlt xk 1 a1, Mlt xk 2 a2,,,

y1k Add zerok Mlt y4k 1 z1,,

y2k Add y1k Qm y2k 1 n,,

y3k Qm Add Mlt y2k z1, Mlt y4k 1 z2,, n,

y4k Qm Add Mlt y3k z1, y4k 1, n,

yk Qm Mlt y4k 1
1

z12
, n,

k MaximumSample<while

yreturn
 

         (B-11) 
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Cabot k 1

q11 b1
2

q22 b1
2

1.

q12 b1
2

b2

q21 b1
2

b2

y11 0

y21 0

y31 0

y1 0

k k 1

zerok Add Add Mlt inputk
a0
2

, Mlt inputk 1
a1
2

,, Mlt inputk 2
a2
2

,,

y1k Qm Add zerok Add Mlt y2k 1 q12, Mlt y1k 1 q11,,, n,

y2k Qm Add zerok Add Mlt y1k 1 q21, Mlt y2k 1 q22,,, n,

yk Qm Add y1k y2k, n,

k MaximumSample<while

yreturn  
         (B-12) 
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Statespace k 1

q11 b1
2

q22 q11

q12 x1 1 k2( ).

k12

q21 x2
1 k2

c1 1 k2
2

c2 k1
2

s1 k1
1 k2

s2 1

y11 0

y21 0

y31 0

y1 0

k k 1

y1k Qm Add Mlt y1k 1 q11, Add Mlt xk c1, Mlt y2k 1 q12,,, n,

y2k Qm Add Mlt y1k 1 q21, Add Mlt xk c2, Mlt y2k 1 q22,,, n,

yk Qm Add Add Mlt y1k 1 s1, Mlt y2k 1 s2,, Mlt xk a0,, n,

k MaximumSample<while

yreturn  
         (B-13) 
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LadderAllpass i 1

k1 b1
1 b2

k2 b2

c1 1 k1( )2

c2 1 k2( )2

R1 0

Q1 0

i i 1

Pi Qm Add Mlt xi c2, Mlt Ri 1 k2,, n,

Qi Qm Add Mlt Pi c1, Mlt Qi 1 k1,, n,

Ri Qm Add Mlt Pi k1, Mlt Qi 1 c1,, n,

yi Qm Add Mlt Ri 1 c2, Mlt xi k2,, n,

i MaximumSample<while

yreturn  (B-14) 
 

LadderMoorer i 1

k1 b1
1 b2

k2 b2

c1 1 k1( )2

c2 1 k2( )2

v0 1
c1 c2.

a0 c2 k1. v1. k2 v2.( ).

v1 1
c2

a1 a2 b1.( ).

v2 a2

R1 0

Q1 0

i i 1

Pi Qm Add Mlt xi c2, Mlt Ri 1 k2,, n,

Qi Qm Add Mlt Pi c1, Mlt Qi 1 k1,, n,

Ri Qm Add Mlt Pi k1, Mlt Qi 1 c1,, n,

Yi Qm Add Mlt Ri 1 c2, Mlt xi k2,, n,

yi Qm Add Add Mlt Yi v2, Mlt Ri v1,, Mlt Qi v0,, n,

i MaximumSample<while

yreturn  
         (B-15) 
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LadderMassie i 1

k1 b1
1 b2

k2 b2

c1 1 k1( )2

c2 1 k2( )2

MG1 1 10

G
20 0.5.

MG2 1 10

G
20 0.5.

R1 0

Q1 0

i i 1

Pi Qm Add Mlt xi c2, Mlt Ri 1 k2,, n,

Qi Qm Add Mlt Pi c1, Mlt Qi 1 k1,, n,

Ri Qm Add Mlt Pi k1, Mlt Qi 1 c1,, n,

Yi Qm Add Mlt Ri 1 c2, Mlt xi k2,, n,

yi Qm Add Mlt Yi MG1, Mlt xi MG2,, n,

i MaximumSample<while

yreturn
 

 
(B-16) 

 
LatticeAllpass i 1

k1 b1
1 b2

k2 b2

R1 0

Q1 0

i i 1

Pi Add xi Mlt Ri 1 k2,,

Qi Qm Add Pi Mlt Qi 1 k1,, n,

Ri Qm Add Qi 1 Mlt Qi k1,, n,

yi Qm Add Ri 1 Mlt Pi k2,, n,

i MaximumSample<while

yreturn
 

 
         (B-17) 
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LatticeMassie i 1

k1 b1
1 b2

k2 b2

MG1 1 10

G
20 0.5.

MG2 1 10

G
20 0.5.

R1 0

Q1 0

i i 1

Pi Add xi Mlt Ri 1 k2,,

Qi Qm Add Pi Mlt Qi 1 k1,, n,

Ri Qm Add Qi 1 Mlt Qi k1,, n,

Yi Qm Add Ri 1 Mlt Pi k2,, n,

yi Qm Add Mlt Yi MG1, Mlt xi MG2,, n,

i MaximumSample<while

yreturn  
         (B-18) 
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Appendix C DSP platform filter implementations 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix C contains the Analog Devices SHARC 2106x family assembly code for the 

DF1 topology implementations in 32 bit fixed and floating point arithmetic.  These 

algorithms were executed on a ADSP-21061 DSP platform.  Noise and distortion 

measurements of the DF1 topology implementations were taken, via an AES/EBU 

interface, by ‘Audio Precision Audio Measurement System Two Cascade’.  These 

measurements were compared to the emulated DF1 topologies in the Mathcad 

environment.  The magnitude frequency response of the bell filter used in the test is shown 

in Figure C-1. 
 

C.1 DF1 floating point implementation in SHARC assembly 
code 
 
/************************************************************************/ 
/* SHARC 21061 evm filter test project      */ 
/* file: df1rnd32.asm          */ 
/* date : july2000 RobC         */ 
/************************************************************************/ 
 
#include "def21060.h" 
 
/************************************************************************/ 
.segment /dm    seg_dmda; 
//preassembler constant data formats and quantisation defaults 
//.PRECISION=32; 
//.ROUND_NEAREST; 
 
.var TapData[4] =  0x00000000, 
   0x00000000, 
                           0x00000000, 

0x00000000; 
 
.var Coeffcients[5] =  -0.9975987673, 
   1.9975919724, 
                          0.9986481667, 

                          -1.9975919724, 
                 0.9989504814; 
.endseg; 
 
/*************************************************************************/ 
.segment /pm seg_pmco; 
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start:   r0=0x000231F3; 
         dm(STCTL1)=r0; 
         r0=0x000231F3; 
         dm(SRCTL1)=r0; 
         nop; 
         nop; 
         r0=0x12345678; 
         dm(TX1)=r0; 
         nop; 
         nop; 
 
BIT SET MODE1 0x00010000;   /* rounding, 32 bit arithmetic */ 
 
         b4=TapData; 
         i4=TapData;      /* tap data pointer - circular */ 
         l4=4;                                  /* length 4 */ 
 
         bit set imask SPR1I;              /* enable sport1 rx interrupt */ 
         bit set mode1 IRPTEN;             /* global interrupt enable  */ 
 
         r0=0x12345678; 
         dm(TX1)=r0; 
         bit set astat FLG2 | FLG3; 
 
wait: nop; 

jump wait; 
 
/************************************************************************/ 
/* SPort1 RX interrupt        */ 
/************************************************************************/ 
 
s1rx: 
 
         r0=dm(RX1); 
 
         i0=Coeffcients;     /* initialise to start of coefficient list */ 
 
         f0=FLOAT r0; 
 
         f4=dm(i4,0);     /* fetch y(n-2)  */ 
         f8=dm(i0,1);       /* fetch coef b2 */ 
         dm(i4,1)=f0;       /* overwrite y(n-2) with x(n) */ 
         f12=f4*f8,   f4=dm(i4,1);      /* y(n-2) * b2, fetch y(n-1) */ 
         f8=dm(i0,1);       /* fetch coef b1 */ 
         f7=f4*f8,  f4=dm(i4,1);    /* y(n-1) * b1 , fetch x(n-2) */ 
         f12=f12+f7,  f8=dm(i0,1);       /* fetch coef a2 */ 
         f7=f4*f8,    f4=dm(i4,-1);    /* x(n-2) * a2 , fetch x(n-1) */ 
         f12=f12+f7,  f8=dm(i0,1);       /* fetch coef a1 */ 
         f7=f4*f8;     /* x(n-1) * a1 */ 
         f12=f12+f7,  f8=dm(i0,1);       /* fetch coef a0 */ 
         f7=f0*f8;     /* x(n) * a0 */ 
         f12=f12+f7;                             /*     */ 
         dm(i4,-1)=f12;                          /*     */ 
 
         r0 = FIX f12;                         /* float to fixed conversion */ 
         dm(TX1)=r0; 
         rti; 
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C.2 DF1 fixed point implementation in SHARC assembly 
code 
 
/************************************************************************/ 
//requires the coefficient variables declaration as follows 
 
.var Coeffcients[5] =  0xc0275780, 
   0x7fd88c00, 
                           0x3fe9da00, 
                           0x80277400, 
                           0x3feece00; 
 
/************************************************************************/ 
 
/************************************************************************/ 
/* Fixed point DF1        */ 
/* rounding quantiser       */ 
/* coefficient scaling of 2       */ 
/* insert into the serial receive interrupt code space    */ 
/************************************************************************/ 
s1rx: 
 
         r0=dm(RX1); 
 
         i0=Coeffcients;       /* initialise to start of coefficient list */ 
 
         r4=dm(i4,0);      /* fetch y(n-2)    */ 
         r8=dm(i0,1);     /* fetch coef b2    */ 
         dm(i4,1)=r0;      /* overwrite y(n-2) with x(n)  */ 
         mrf=r4*r8,  r4=dm(i4,1);  /* y(n-2) * b2, fetch y(n-1)  */ 
         r8=dm(i0,1);      /* fetch coef b1    */ 
         mrf=mrf + r4*r8, r4=dm(i4,1);  /* y(n-1) * b1 , fetch x(n-2)  */ 
         r8=dm(i0,1);      /* fetch coef a2    */ 
         mrf=mrf + r4*r8, r4=dm(i4,-1);  /* x(n-2) * a2 , fetch x(n-1)  */ 
         r8=dm(i0,1);       /* fetch coef a1    */ 
         mrf=mrf + r4*r8;    /* x(n-1) * a1    */ 
         r8=dm(i0,1);       /* fetch coef a0    */ 
         mrf=mrf + r0*r8;    /* x(n) * a0    */ 
         nop; 
         r2 = RND mrf; 
         r1 = ASHIFT r2 BY 1;  /* arithmetic shift left  */ 
         dm(i4,-1)=r1;                         /*      */ 
         dm(TX1)=r1; 
         rti; 
 
/************************************************************************/ 
 
/************************************************************************/ 
/* Fixed point DF1        */ 
/* truncation quantiser       */ 
/* coefficient scaling of 2       */ 
/* insert into the serial receive interrupt code space    */ 
/************************************************************************/ 
s1rx: 
 
         r0=dm(RX1); 
         i0=Coeffcients;        /* initialise to start of coefficient list */ 
         r4=dm(i4,0);      /* fetch y(n-2)    */ 
         r8=dm(i0,1);      /* fetch coef b2    */ 
         dm(i4,1)=r0;      /* overwrite y(n-2) with x(n)  */ 
         mrf=r4*r8,    r4=dm(i4,1);  /* y(n-2) * b2, fetch y(n-1)   */ 
         r8=dm(i0,1);       /* fetch coef b1    */ 
         mrf=mrf + r4*r8, r4=dm(i4,1);  /* y(n-1) * b1 , fetch x(n-2)  */ 
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         r8=dm(i0,1);      /* fetch coef a2    */ 
         mrf=mrf + r4*r8, r4=dm(i4,-1); /* x(n-2) * a2 , fetch x(n-1)  */ 
         r8=dm(i0,1);       /* fetch coef a1    */ 
         mrf=mrf + r4*r8;    /* x(n-1) * a1    */ 
         r8=dm(i0,1);      /* fetch coef a0    */ 
         mrf=mrf + r0*r8;    /* x(n) * a0    */ 
         nop; 
         r2 = mr1f; 
         r1 = ASHIFT r2 BY 1;   /* arithmetic shift left   */ 
         dm(i4,-1)=r1;                         /*         */ 
         dm(TX1)=r1; 
         rti; 
 
/************************************************************************/ 
 
 

C.1 Measured magnitude frequency response of test filter 
 
Figure C-1 shows the magnitude frequency response of the test filter used in comparative 

tests of the emulated DF1 topology with the DF1 topology implemented on the 32 bit DSP 

platform.  The test filter used was a bell filter, tuned to a centre frequency, Fc equal to 20 

Hz,  Q factor of 8.65 with an attenuation of –18 dB. 
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Figure C-1 Measured frequency response of bell filter implemented on SHARC 21061 DSP under 
floating point arithmetic (F=20Hz, Q=8.65, G=-18dB). 
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Appendix D Coefficient update topology functions 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix D contains Mathcad functions used in the investigation of filter topology 

behaviour during coefficient update.  This includes the functions for coefficient 

calculation, functions implementing the discrete-time varying filter topologies and the 

implementation of the various coefficient and parameter interpolation schemes.  
 

D.1 Coefficient calculation 
 
This section contains coefficient calculation functions for the various filter types 

considered in this project.  The coefficients calculated in this section are specifically for 

the direct form topology (five coefficients for a z-plane biquadratic).  Coefficient 

mappings for each of the other topologies are given in Section D.2 with the respective 

filter topology implementation.  The bilinear z-transform is used as the example mapping 

technique for the low and high pass filters, LF and HF shelving filters and the bell filter.  

The notch filter coefficient realisation uses the direct pole zero placement technique.  

Note, Ts is the sampling interval (1/Fs). Fs is the sampling frequency 

Equations (D-1) and (D-2) are the tuned frequency and Q prewarping functions used in 

conjunction with the bilinear z-transform.  If the tuned frequency, Fc, and the Q factor are 

to be pre-warped, then variables F and Q in the following coefficient calculation functions 

are effectively replaced by the prewarped parameters produced by (D-1) and (D-2).  

 

Fwarp Fc( ) tan π Fc.

Fs
Fs
π

.

 
         (D-1) 

Qwarp Fc Q,( ) Fc

tan π Fc.

Fs
Fs
π

.
Q.

 
 
         (D-2)   
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Coefficient calculation for second order low pass filter is shown in (D-3), where F is the 

tuned frequency (-3 dB corner frequency) and Q (quality factor). 

 

LPFa0 F Q,( ) 4 π
2. F2. Q.

k2 Q. 4 π
2. F2. Q. 2 π. F. k.

LPFa1 F Q,( ) 2 LPFa0 F Q,( ). LPFa2 F Q,( ) LPFa0 F Q,( )

LPFb1 F Q,( ) 2 k2. Q. 8 π
2. F2. Q.

k2 Q. 4 π
2. F2. Q. 2 π. F. k.

LPFb2 F Q,( ) 2 π. F. k. k2 Q. 4 π
2. F2. Q.

k2 Q. 4 π
2. F2. Q. 2 π. F. k.  

 
         (D-3) 
 
where,   

  
k 2

Ts . 
 
Coefficient calculation for second order high pass filter is shown in (D-4), where F is the 

tuned frequency (-3 dB corner frequency) and Q (quality factor). 

 

HPFa0 F Q,( ) k2 Q.

k2 Q. 4 π
2. F2. Q. 2 π. F. k.

HPFa1 F Q,( ) 2 HPFa0 F Q,( ). HPFa2 F Q,( ) HPFa0 F Q,( )

HPFb1 F Q,( ) 2 k2. Q. 8 π
2. F2. Q.

k2 Q. 4 π
2. F2. Q. 2 π. F. k.

HPFb2 F Q,( ) 2 π. F. k. k2 Q. 4 π
2. F2. Q.

k2 Q. 4 π
2. F2. Q. 2 π. F. k.  

           
(D-4) 

 
 
Coefficient calculation for second order bell filter is shown in (D-5), where F is the tuned 

centre frequency and Q (quality factor).  The variables A and B determine the gain G.  

Variables A and B also determine the relationship between Q and Gain.  The expressions 

shown for A and B provide a constant Q symmetrical with cut and boost. 
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B G( ) 1 10

G
20 1if

1

10

G
20

otherwise

A G( ) 10

G
20 10

G
20 1if

1 otherwise

Bella1 F G, Q,( ) 8 π
2. F2. 2 k2.

2 B G( ). π.
F
Q
. k. k2 4 π

2. F2.
Bella0 F G, Q,( )

2 A G( ). π.
F
Q
. k. k2 4 π

2. F2.

2 B G( ). π.
F
Q
. k. k2 4 π

2. F2.

Bella2 F G, Q,( )
k2 4 π

2. F2. 2 A G( ). π.
F
Q
. k.

2 B G( ). π.
F
Q
. k. k2 4 π

2. F2.

Bellb1 F G, Q,( ) 8 π
2. F2. 2 k2.

2 B G( ). π.
F
Q
. k. k2 4 π

2. F2.
Bellb2 F G, Q,( )

k2 4 π
2. F2. 2 B G( ). π.

F
Q
. k.

2 B G( ). π.
F
Q
. k. k2 4 π

2. F2.
 

 
         (D-5) 
 
 

Coefficient calculation schemes for second order LF and HF shelving filters are given in 

(D-5) and (D-6), where F is the tuned corner frequency and Q is the slope control.  The 

variables A and B determine the gain G.  Variables A and B also determine the 

relationship between Q and Gain.  The example expressions given in (D-6) produce a non-

constant Q relationship symmetrical response for cut and boost. 

 
Q

A G( ) 1 10

G
20 1

1 10

G
20

π. B G( ) 1 10

G
20 1

1 10

G
20

π.

 
         (D-6) 
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LFshelfa0 G F,( ) k2 Q. 2 k. A G( ). 2. π. F. A G( ) 2. π. F.( )2

k2 Q. 2 k. B G( ) 2. π. F.( ). B G( ) 2. π. F.( )2

LFshelfa1 G F,( ) 2 k2. Q. 2 A G( ) 2. π. F.( )2.

k2 Q. 2 k. B G( ) 2. π. F.( ). B G( ) 2. π. F.( )2

LFshelfa2 G F,( ) 2 k. A G( ) 2. π. F.( ). k2 Q. A G( ) 2. π. F.( )2

k2 Q. 2 k. B G( ) 2. π. F.( ). B G( ) 2. π. F.( )2

LFshelfb1 G F,( ) 2 k2. Q. 2 B G( ) 2. π. F.( )2.

k2 Q. 2 k. B G( ) 2. π. F.( ). B G( ) 2. π. F.( )2

LFshelfb2 G F,( ) 2 k. B G( ) 2. π. F.( ). k2 Q. B G( ) 2. π. F.( )2

k2 Q. 2 k. B G( ) 2. π. F.( ). B G( ) 2. π. F.( )2
 

         (D-7) 
 
 

HFshelfa0 G F,( ) A G( )2 k2. 4 π
2. F2. Q. 4 A G( ). k. π. F.

B G( )2 k2. 4 π
2. F2. Q. 4 B G( ). k. π. F.

HFshelfa1 G F,( ) 2 k2. Q. 2 A G( )2.

B G( )2 k2. 4 π
2. F2. Q. 4 B G( ). k. π. F.

HFshelfa2 G F,( ) 2 k. A G( ). k2 Q. A G( )2

B G( )2 k2. 4 π
2. F2. Q. 4 B G( ). k. π. F.

HFshelfb1 G F,( ) 2 k2. Q. 2 B G( )2.

B G( )2 k2. 4 π
2. F2. Q. 4 B G( ). k. π. F.

HFshelfb2 G F,( ) 2 k. B G( ). k2 Q. B G( )2

B G( )2 k2. 4 π
2. F2. Q. 4 B G( ). k. π. F.  

         (D-8) 
 
 

Coefficient calculation schemes for a second order notch filter are given in (D-9) where F 

is the tuned notch frequency. Note r determines the radius of the complex conjugate poles 

on the z-plane.  This radius r controls the bandwidth of the notch filter independent of 

tuned frequency, for example r = 0.9995 produces a –3dB bandwidth of 7.5 Hz at a 

sampling frequency of 48 kHz. 

 
notcha0 1 notcha1 F( ) 2 cos 2 π.

F
Fs
.. notcha2 1

notchb1 F( ) 2 r. cos 2 π.
F
Fs
.. notchb2 r2

 
 
         (D-9) 
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D.2 Discrete-time varying filter topologies 
 
This section lists the discrete-time varying filter topologies used in the investigation.  The 

coefficients are implemented as arrays where each sample instance has a separate 

coefficient entry.  For example the DF1 topology example in (D-10) uses a coefficient 

array set shown as ‘IntEa0i , IntEa1i , IntEa2i , IntEb1i , IntEb2i’.  These coefficients, for 

example, could be a pre-calculated coefficient set using exponential interpolation across 

the frequency response state change.  The non-direct form topologies also include the 

relevant coefficient mappings required to map the biquadratic coefficients to the 

coefficients used in each of the topologies. 

 
D-10 DF1, using coefficient set IntEa0i , IntEa1i , IntEa2i , IntEb1i , IntEb2i. 
D-11 DF2, using a generic coefficient set (a0k, a1k, a2k, b1k, b2k). 
D-12 DF1T, using a generic coefficient set. 
D-13 DF2T, using a generic coefficient set. 
D-14 DF2T (using coefficient compensation), generic coefficient set. 
D-15 Gold-Rader, using a generic coefficient set. 
D-16 Kingsbury, using a generic coefficient. 

D-17 Zölzer, using a generic coefficient. 

D-18 Cabot, using a generic coefficient. 

D-19 State-space, using a generic coefficient. 

D-20 Ladder and lattice allpass, using a generic coefficient. 

D-21 Ladder Massie, using a generic coefficient. 

D-22 Lattice Massie, using a generic coefficient. 

D-23 Ladder Moorer, using a generic coefficient. 

 

df1i IntEa0i input i
. IntEa1i input i 1

. IntEa2i input i 2
. IntEb1i df1i 1

. IntEb2i df1i 2
.

 
         (D-10) 
 

df2 k 1

w0 0

w1 0

k k 1

wk inputk b1k wk 1
. b2k wk 2

.

yk a0k wk
. a1k wk 1

. a2k wk 2
.

k MaximumSample<while

yreturn
 

  (D-11) 
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df1t k 1

w1 0

p1 0

q1 0

r1 0

s1 0

k k 1

wk inputk pk 1

yk wk a0k
. rk 1

pk qk 1 wk b1k
.

qk wk b2k
.

rk sk 1 wk a1k
.

sk wk a2k
.

k MaximumSample<while

yreturn
 

 
         (D-12) 

df2t k 1

p1 0

w1 0

k k 1

yk inputk a0k
. pk 1

pk inputk a1k
. yk b1k

. wk 1

wk inputk a2k
. yk b2k

.

k MaximumSample<while

yreturn
 

 
         (D-13) 
 

df2tc k 1

p1 0

w1 0

k k 1

yk inputk a0k 2
. pk 1

pk inputk a1k 1
. yk b1k 1

. wk 1

wk inputk a2k
. yk b2k

.

k MaximumSample<while

yreturn
 

       (D-14) 
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GoldRader k 1

rcos GRCos

rsin GRSin

y11 0

y21 0

youtput 1 0

k k 1

y1k inputk a0k
. inputk 1 a1k

. inputk 2 a2k
. y1k 1 rcosk

. y2k 1 rsink
.

y2k y1k 1 rsink
. y2k 1 rcosk

.

youtput k y2k
1

rsink

.

k MaximumSample<while

youtputreturn

where

GoldRaderθk acos
b1i

2 b2k
.

GoldRaderRk b2k

GRCosk GoldRaderRk cos GoldRaderθk
. GRSink GoldRaderRk sin GoldRaderθk

.
 

 
         (D-15) 
 
 



  Appendix D 

 280  

Kingsbury k 1

k1 Kingsburyk1

k2 Kingsburyk2

y11 0

y21 0

y31 0

y41 0

youtput 1 0

k k 1

y1k inputk a0k
. inputk 1 a1k

. inputk 2 a2k
. y4k 1 k1k

.

y2k y1k y2k 1

y3k y2k y4k 1 k2k
.

y4k y3k k1k
. y4k 1

youtput k y4k 1
1

k1k

.

k MaximumSample<while

youtputreturn

where
Kingsburyk1k 1 b1k b2k Kingsburyk2k

1 b2k

Kingsburyk1k  
  

        (D-16) 
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Zolzer k 1

z1 Zolzerz1

z2 Zolzerz2

y11 0

y21 0

y31 0

y41 0

youtput 1 0

k k 1

y1k inputk a0k
. inputk 1 a1k

. inputk 2 a2k
. y4k 1 z1k

.

y2k y1k y2k 1

y3k y2k z1k
. y4k 1 z2k

.

y4k y3k z1k
. y4k 1

youtput k y4k 1
1

z1k
2

.

k MaximumSample<while

youtputreturn

where

Zolzerz1k
3 1 b1k b2k Zolzerz2k

1 b2k

Zolzerz1k  
  

        (D-17) 
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Cabot k 1

q11 Cabotq11

q22 Cabotq22

q12 Cabotq12

q21 Cabotq21

y11 0

y21 0

y31 0

youtput 1 0

k k 1

zerok inputk a0k
. inputk 1 a1k

. inputk 2 a2k
. 0.5.

y1k zerok q12k y2k 1
. q11k y1k 1

.

y2k zerok q21k y1k 1
. q22k y2k 1

.

y3k y1k 1 y2k 1

youtput k y3k

k MaximumSample<while

youtputreturn

where

Cabotq11k

b1k

2
Cabotq22k

b1k

2
Cabotq12k

b1k

2
b2k Cabotq21k

b1k

2
b2k

 
  

        (D-18) 
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Statespace k 1

y11 0

y21 0

y31 0

youtput 1 0

k k 1

y1k y1k 1 q11k
. inputk c1k

. y2k 1 q12k
.

y2k y1k 1 q21k
. inputk c2k

. y2k 1 q22k
.

youtput k y1k 1 s1k
. y2k 1 s2k

. inputk a0k
.

k MaximumSample<while

youtputreturn
where

m1k b1k m2k b2k

k1k a1k a0k m1k
. k2k a2k a0k m2k

.

x1k k2k m1k

k1k

2
. k2k

2 k1k k2k
. m1k

. k1k
2 m2k
.

x2k k2k m1k

k1k

2
. k2k

2 k1k k2k
. m1k

. k1k
2 m2k
.

q11k

m1k

2
q22k q11k c1k

1 k2k

2
c2k

k1k

2

q12k

x1k 1 k2k
.

k1k
2

q21k

x2k

1 k2k

s1k

k1k

1 k2k

s2k 1

 
  

        (D-19) 
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LatticeAllpass i 1

R1 0

Q1 0

i i 1

Pi input i Ri 1 k2i
.

Qi Pi Qi 1 k1i
.

Ri Qi k1i
. Qi 1

Yi Ri 1 Pi k2i
.

i MaximumSample<while

Yreturn

LadderAllpass i 1

R1 0

Q1 0

i i 1

Pi input i c2i
. Ri 1 k2i 2

.

Qi Pi c1i
. Qi 1 k1i 1

.

Ri Pi k1i
. Qi 1 c1i

.

Yi Ri 1 c2i
. input i k2i

.

i MaximumSample<while

Yreturn

where

k2i b2i k1i

b1i

1 b2i

c1i 1 k1i
2 c2i 1 k2i

2

 
  

        (D-20) 
 

LadderMassie i 1

R1 0

Q1 0

i i 1

Pi input i c2i
. Ri 1 k2i

.

Qi Pi c1i
. Qi 1 k1i

.

Ri Pi k1i
. Qi 1 c1i

.

Yi Ri 1 c2i
. input i k2i

.

output i Yi 1 MassieG( ). input i 1 MassieG( ). 0.5.

i MaximumSample<while

outputreturn
where

MassieG 10

G
20

 
  

        (D-21) 
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LatticeMassie i 1

R1 0

Q1 0

i i 1

Pi input i Ri 1 k2i
.

Qi Pi Qi 1 k1i
.

Ri Qi k1i
. Qi 1

Yi Ri 1 Pi k2i
.

output i Yi 1 MassieG( ). input i 1 MassieG( ). 0.5.

i MaximumSample<while

outputreturn  
  

        (D-22) 
 

LadderMoorer i 1

R1 0

Q1 0

i i 1

Pi input i c2i
. Ri 1 k2i

.

Qi Pi c1i
. Qi 1 k1i

.

Ri Pi k1i
. Qi 1 c1i

.

Yi Ri 1 c2i
. input i k2i

.

output i Yi v2i
. Ri v1i

. Qi v0i
.

i MaximumSample<while

outputreturn

where

v2i a2i v1i
1

c2i

a1i a2i b1i
.. v0i

1
c1i c2i

.
a0i c2i k1i

. v1i
. k2i v2i

..

 
  

        (D-23) 
 

D.3 Interpolator functions 
 
This section describes the coefficient and parameter interpolation algorithms employed to 

minimise signal disturbance under coefficient update.  The linear interpolator algorithm is 

shown in (D-24).  Finite wordlength arithmetic can be applied to the addition operation in 

this algorithm if required.  The algorithm can also perform sub-sampled interpolation 

through the manipulation of constant ‘interleave’.  (D-25) shows the linear interpolator 

increment used in the algorithm.  An alternative increment function is shown under finite 

wordlength constraints can also be quantised.  (D-26) shows the application of the linear 

interpolator function between two coefficient states, sa0 and fa0. 
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IntLinRamp start target,( ) c1 start

n 0

cδ target start( ) interleave.

RampSamples

i 1

i i 1

δ 0 i LinearStartPtif

δ cδ i LinearStartPt>if

δ 0 i LinearStartClampPt>if

δ cδ i LinearEndPt>if

δ 0 i LinearEndClampPt>if

n n 1

ci ci 1 δ n interleaveif

ci ci 1 otherwise

n 0 n interleaveif

i MaximumSample<while

c
 

         (D-24)   
    
 

a0δ fa0 sa0
RampSamples

  
a0δc fxstd fa0 sa0

RampSamples
 

         (D-25) 
 

Lina0 IntLinRamp sa0 fa0,( )
 

         (D-26) 
 
(D-27) shows a function implementing an exponential interpolator using fixed point single 

precision arithmetic emulation.  The time constant is controlled through the variable, 

‘τcoef’, (D-28) where, ‘IFs’ is the sampling frequency of the interpolator and ‘torr’ is the 

time constant in seconds.  (D-29) shows the exponential interpolator facilitating sub-

sampling frequencies through the variable interleave, note the variable ‘τcoef’ needs to be 

consider the sub-sampling frequency.  (D-30) shows an example of the exponential 

interpolator implemented in single precision floating point arithmetic (using sign 

magnitude truncation).  Note ‘n’ is the number of fractional bits in the single precision 

floating point mantissa format.  Addsmtrc and Multsmtrc are arithmetic operations in 

extended precision floating point format.  (D-31) shows the application of an exponential 

interpolator function between two coefficient states, sa0 and ta0. 
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IntExpFixed start target,( ) c1 start

i 1

i i 1

ci fxstd ci 1 fxstd τcoef fxext target i ci 1
.

ci target i ci ci 1if

i MaximumSample<while

c
 

         (D-27) 
 

τcoef 1 e

1
IFs torr.

 
         (D-28) 
 
IntExp start target,( ) c1 start

n 0

i 1

i i 1

n n 1

ci ci 1 τcoef target i ci 1
. n interleaveif

ci ci 1 otherwise

n 0 n interleaveif

i MaximumSample<while

c
 

         (D-29) 
 
IntExpFloat start target,( ) c1 start

i 1

i i 1

ci flsmtrc Addsmtrc ci 1 Multsmtrc Addsmtrc target i ci 1, τcoef,, n,

ci target i ci ci 1if

i MaximumSample<while

c  
         (D-30) 
 
 

IntEa0 IntExpRamp sa0 ta0,( )
    (D-31) 

 
(D-32) shows an example of a frequency parameter interpolation scheme.  The frequency 

interpolation has a log law as shown.  The interpolated frequency parameter is passed into 

a coefficient calculation process, shown in (D-33).  The example coefficient calculation 

function used in (D-33) is the Bell filter a0 function. Note, in this example, the G and Q 

are constant. 
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freqi sf i StartInterpolationPtif

sf 10
log

ff
sf

i StartInterpolationPt
RampSamples

.

. i StartInterpolationPt>if

ff i StartInterpolationPt>if

ff 10
log

sf
ff

i EndInterpolationPt
RampSamples

.

. i EndInterpolationPt>if

sf i EndInterpolationPt>if  
       (D-32) 

 

a0i Bella0 freqi sg, sq,
    (D-33) 
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