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Abstract

A large number of intelligent medical systems exist, but few are in

routine clinical use. This is due, in part, to a lack of a robust objective method

to quantify the performance of such systems. Potentially, ROC analysis

could form a basis for a robust and objective evaluation of intelligent

medical systems, but existing methods of ROC analysis require large sample

sizes to be statistically valid. However, evaluation of intelligent medical

systems often involve a small number of cases (because of time and cost of

collecting ‘gold standards’) and so confidence bounds are required for ROC

indices of performance. In this paper we present a new method for generating

the probability density functions (pdfs) and confidence bounds for ROC

points which is robust and accurate for any sample size. The method is

generic and is particularly suited for evaluating the performance of systems

where sample sizes are small. We illustrate the use of the method by applying

it to assess the performance of two medical systems taken from the literature.

The method has been implemented in C and in MATLAB.
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1 Introduction

A large number of intelligent medical systems (including medical

expert systems, neural networks, classifiers, knowledge discovery and data

mining systems) have been, and are being, developed to practically aid the

busy clinician and to improve patient care in areas such as diagnosis,
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prognosis, decision support and screening, but few such systems are in

routine clinical use. This is partly because of uncertainty about safety,

performance and/or clinical effectiveness of such systems. The lack of a

robust and objective method for evaluating intelligent medical systems has

contributed significantly to the uncertainty. A robust method should allow

us to objectively compare an intelligent medical system to human experts

and to make accurate predictions of the risks of introducing the system into

practice to ensure it is safe and will perform at an acceptable level. In

medicine and healthcare, where safety is critical, it is important to have an

objective method of evaluating the performance of intelligent medical

systems if such systems are to be widely accepted in clinical practice.

Potentially, analysis of receiver operating characteristic (ROC) curves

could form a basis for a robust and objective evaluation of intelligent

medical systems. This should allow, for example, the diagnosis given by an

intelligent system to be compared to a ”bench mark” diagnosis or ”gold

standard” provided by clinical experts. Statistical uncertainties in perfor-

mance must also be quantified so that the risk of deploying the system can

be calculated. However, existing methods of ROC analysis require large

sample sizes to be statistically valid. Medical intelligent system evaluations

are expensive (e.g. in terms of time and resources) and for this reason they

are usually carried out with a small number of cases. Thus, in practice the

number of cases for which expert opinion can be obtained is severely

constrained. The importance of sample size on the performance of intelligent

medical systems is recognised, but the problems of small sample size which

is inherent in intelligent medical systems has not been hitherto addressed.

In this paper, we will first introduce ROC curve analysis. We will then

introduce a method that arose from a critical investigation into the potential

role of ROC analysis as a basis for objective evaluation of intelligent medical

systems which is robust and accurate for any sample size. The method allows

visual analysis of confidence surfaces for an intelligent medical system and

may be used to predict the risks associated with deploying such a system in

clinical practice. The method is generic and may be applied to other complex

diagnostic or classification problems. The practical use of the method is

illustrated by retrospective analysis of two existing systems reported in the

literature. In future, it will form part of a framework for robust objective
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evaluation of the performance of intelligent medical systems developed

within the BIOPATTERN project and the associated software made widely

accessible.

2 Basics of ROC analysis

Taking the situation where there are two types of events, diseased and

healthy, it is hoped to distinguish between them by measuring a characteristic

property of these events, on an

ordinal, interval or ratio scale. Fig. 1 gives a hypothetical example of

the relative frequency with which the two types of events give different

values of the measured property.

Table 1: Single threshold

contingency

Figure 1: The underlying model for

ROC curves

To distinguish between the two types of events, a threshold is chosen

so that events with a measurement greater the threshold are labelled as

’healthy’, and events with a measurement less than the threshold are labelled

as ’diseased’. Since the two distributions overlap, no threshold value will

completely separate them. Table 1 shows the 2 x 2 contingency of the actual

type of an event, against its test classification according to the threshold.

This table assumes there is a standard by which the actual type of the event

is known. The test can then be characterised by two ratios:
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The Hit Rate is the fraction of the total diseased cases the system gets

right and the False Alarm Rate is the fraction of the total healthy cases the

system gets wrong, i.e. misclassifies as diseased.

If multiple thresholds are used, for example, to categorise events into

‘definitely diseased’, ‘possibly diseased’, ‘possibly healthy’ and ‘definitely

healthy’, the contingency table can be expanded to a 2 x n + 1 table, where

n is the number of thresholds. For example for two threshold we obtain the

2 x 3 table, as shown in Table 2 and thus 2 pairs of Hit Rate and False Alarm

Rate can be calculated (by moving a threshold down the table). Point 0 is for

the ’Diseased’ category alone, point 1 is for the ’Diseased’ plus ’Unknown’.

The resulting ROC curve is shown in Fig. 2.

With a sufficiently large number of thresholds changing in small

discrete steps, as might be obtained from a Neural Network (NNet) for

example, a plot of Hit rate (along the y axis) against False Alarm Rate (along

x axis) for each threshold gives a ROC curve. The resulting ROC curve for

a multi threshold plot is shown in Fig. 2. The ROC curve shows the trade off

between correctly detecting a diseased case, and mistaking healthy case for

a diseased. If the two underlying population distributions are well separated,

the curve will immediately rise to the top corner (0.0, 1.0), and then proceed

Table 2: Hypothetical intelligent

medical system

Figure 2: Typical ROC curve
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horizontally. If the distributions tend to overlap, so that diseased case and

healthy case cannot be distinguished by the measurement, the curve will

approach the diagonal (dotted line from 0.0, 0.0 to 1.0, 1.0).

3 New approach to ROC analysis

There are a number of limitations of ROC analysis when applied to

intelligent medical systems. The area under the curve (AUC) is a useful

index which is often used to quantify performance of the system. However,

it may be clinically more meaningful to consider points on the ROC curve

than the use of AUC because intelligent systems are more likely to be used

to make decisions about the status of an individual. Another limitation of

existing ROC analysis arises when the number of points is small, as it is often

the case in medicine because of reasons such as cost and time. In the above

cases, confidence bounds are needed for the indices of performance. To

address this we have introduced a robust and accurate method which

calculates the probability density function (pdf) for each point on the ROC

curve for any sample size and generates confidence bounds as contours on

the point. The method is based upon asking the following question for every

possible point on the surface of the ROC graph (see [1], [2] for full details):

“If this point represents the true Hit Rate and False Alarm Rate of the

population, what would be the probability of getting the sample actually

obtained?”

If that question can be answered for every point on the graph, the

relative probability of every point can then be calculated, and normalised

such that the total relative probability sums to 1. This generates the

normalised relative probability surface for the true Hit Rate and False Alarm

Rate. By dividing the surface into a fine grid, and integrating the expression

for the relative probability of every point over each square of the grid, the

surface can then be presented as a 3D mesh, or contour lines can be drawn

to enclose an arbitrary percentage of the probability, e.g. 95% of the

probability, which gives the 95% confidence interval for the location of the

true Hit Rate and False Alarm Rate.

Consider the full situation in which y is the Hit Rate of the population,

given as a probability; x is the False Alarm Rate of the population, given as

a probability; f is the frequency of disease events in the population, given as
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a probability; b0 is the number of True Positive (TP) in the sample, a0 is the

number of False Positive (FP) in the sample, b1 is the number of False

Negative (FN) in the sample, a1 is the number of True Negatives (TN) in the

sample. Then, P, the probability of a ROC point being at the location (x, y),

is given by:

 

Beta function are used to substitute for the integrals (See Appendix in

[1] for details) obtaining

To represent the surface, it is divided into a fine grid and the probability

of each quantised grid square is calculated by integrating the probability at

a point, over the area of each grid square. The integral over the area is equal

to the product of the two one-dimensional (1-D) integrals along the Hit Rate

and False Alarm Rate axes. Therefore, two vectors, X and Y, each with i

elements, are defined to hold the 1-D integrals

and           

For all i from i = 0 to i = n. The pdf, quantised as a fine grid, is therefore

the product of the two vectors

Surface = X · YT (5)

the integration of (3) and (4 ) give both (6) and (7).

Generalized mathematical equations for generating the pdfs and

confidence bounds for multiple ROC points have been derived (see [1] and

[2]). A C-language implementation is described in [2] and a MATLAB
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implementation has recently been developed. The MATLAB implementation

will be developed into a toolkit and made accessible in the near future.

4 Illustrative Examples

Two examples taken from the literature are used to illustrate the use and

benefit of the new method.

The first example is taken from Swets [3] in which a radiological

example was presented to illustrate the use of ROC analysis and the Area

Under the Curve (AUC) as a measure of accuracy. A study had previously

been carried out, in which six radiologists were asked to examine and

classify 118 mammograms (58 malignant, 60 benign) into one of five

categories, according to the likelihood that the lesion was malignant. The

radiologists first diagnosed the mammograms unaided (denoted as ’standard’),

and then used two diagnostic aids (denoted as ’enhanced’). The raw data for

the pooled categorisations were given in the paper, allowing the ROC graph

for the standard and enhanced diagnoses to be reproduced as shown in Fig.

3. One should note that the validity of pooling the data from six experts to

produce one ROC curve is debatable, however, the data does provide a

useful example of a ROC curve with a high sample size.

The second example is taken from Adlassnig and Scheithauer [4], in

which an expert system, known as CADIAG- 2/PANCREAS, for the

differential diagnosis of ten different types of pancreatic disease, is described.

The performance of the system was compared to an histologically or

clinically confirmed ’Gold-Standard’ diagnosis. There were 47 patient

records available in which one or more of a subset of six pancreatic diseases

had been diagnosed. Four patients had dual diagnoses, giving a total of 51

diagnoses of one of six diseases. A series of ROC graphs were presented,

illustrating the performance of the CADIAG-2 system in the differential

diagnosis of specific diseases, both using what was described as a limited set

of patient data and with the ’full’ set of available patient data. Two of

Adlassnig and Scheithauers ROC curves, (See Fig. 4), illustrate the evaluations

of 8 diagnoses of acute pancreatitis from the 51 cases compared to the ’Gold-

Standard’, using ’limited’ patient data and ’full’ patient data respectively.

Although the raw data were not given, they can be reconstructed from the

ROC graphs, because the number of cases was small. The data are combined
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here and reproduced as Fig. 4. However, originally 11 categories were used,

which because of the small number of cases often left zero cases in a category

which gives an ambiguous reconstruction. Thus here only five categories

have been reconstructed. It should also be noted that this makes the

confidence boundaries wider and so this re-analysis is slightly unfair to

Adlassnig and Scheithauer, but still illustrates the point about sample sizes.

From the raw data the 95% confidence boundary of each point on the

four curves was calculated using tools described in [2] with a grid of 256 x

256 and are shown in Fig. 5, and Fig. 6. From Fig. 6, it is obvious that there

is considerable uncertainty in the results due to the limited number of cases

used. In their analysis, Adlassnig and Scheithauer state that accuracy was

always increased by adding the ’full’ patient data, in accordance with

anticipation. While the ROC curves presented in Fig. 4 appear to support this

commonsense conclusion, the large confidence boundaries shown in Fig. 6

suggest that this conclusion was probably premature given the data.

Fig. 5 and 6 clearly illustrate the difference that sample size makes to

the confidence that can be placed in the location of each point. While the

ROC curve of the mammogram diagnoses in Fig. 3 do not look as accurate

as the ROC curve for the diagnosis of acute pancreatitis in Fig. 4, examination

of the confidence boundaries in Fig. 5 and 6 shows that the 708 (six opinions

of 118) mammograph cases are sufficient to give good confidence of the

location of the ROC points, while the 51 pancreatic cases give a much larger

posterior boundary.

In particular, it can be seen by consideration of pairwise points in Fig.

5, that the points are outside of each others con- fidence boundaries in all

cases, and that the posterior boundaries are mutually exclusive in one case.

In contrast, in Fig. 6, there is a high degree of overlap in posterior boundaries in

all cases. In particular, the points with False Alarm Rate of 0.093 lie within each

others confidence boundaries, and the ’limited’ data point with False Alarm Rate
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Figure 3: ROC curve of diagnosis of 708

mammograms (from Swets [3])

Figure 4: ROC curve of diagnosis of

acute pancreatic from 51 cases (from

Adlassnig & Scheithauer [4]

of 0.638 lies well within the confidence boundary of the ’full’ point.

5 Conclusions

In this paper we have presented a new method for the evaluation of

intelligent medical systems using ROC analysis. The method is robust and

valid for any sample size, removing one major limiting factor of standard

ROC analysis. Potentially, the method could be extended to determine risks

associated with deployment of intelligent medical systems in clinical

practice in area such as brain diseases [5] and cancer [6]. A Bayesian

Figure 5: 95% Confidence boundary of

ROC points in Fig. 3

Figure 6: 95% Confidence boundary of

ROC points in Fig. 4
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formulation of the method can be found in [7]. In future, it will form part of

a framework for robust objective evaluation of the performance of intelligent

medical systems within the BIOPATTERN project and the associated

software will be made widely accessible.
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