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Abstract. An assessment of neonatal outcome may be obtained from analysis of
blood in the umbilical cord of an infant immediately after delivery. This can pro-
vide information on the health of the newborn infant and guide requirements for
neonatal care, but there are problems with the technique. Samples frequently con-
tain errors in one or more of the important parameters, preventing accurate interpre-
tation and many clinical staff lack the expert knowledge required to interpret results.
The development and validation of an expert system to overcome these difficulties
is described. The initial development utilised conventional ‘crisp’ logic within the
rule base and this system was evaluated to commercial release. This expert system
validates the raw data, provides an interpretation of the results for clinicians and
archives all the results, including the quality control and calibration data, for per-
manent storage. Subsequent development went on to incorporate fuzzy logic into
part of the expert system knowledge base, but tests of this preliminary fuzzy sys-
tem showed that it performed worse than the original crisp expert system. A tuning
algorithm was then employed to modify the fuzzy model and this process resulted
in improved performance to a level comparable to clinicians and superior to the
crisp system. Finally, the entire knowledge base was converted to utilise fuzzy logic
and this ‘integrated’ fuzzy expert system was validated against international expert
opinion.

Keywords, Expert systems, fuzzy logic, validation, umbilical cord acid-base bal-
ance, neonatal outcome

1 Introduction

Childbirth is a stressful experience for both mother and infant. Even during normal
labour every infant is being regularly deprived of oxygen as maternal contractions,
which increase in frequency and duration throughout labour until delivery, restrict
blood supply to the placenta. This oxygen deprivation can lead to fetal ‘distress’,
permanent brain damage and, in the extreme, fetal death. Once an infant has been
delivered the attending clinicians must make an immediate assessment of the need
for neonatal resuscitation.



In the 1950’s Virginia Apgar introduced a scoring system [1] specifically to deter-
mine any requirement for neonatal resuscitation. The system, originally intended to
be assessed objectively by an independent observer, sums five clinical factors (heart
rate, respiratory effort, reflex irritability, muscle tone and skin colour) scored 0, 1 or
2 to give a total between 0 and 10, at 1 minute and 5 minutes after birth. This sys-
tem has been adopted almost universally in the developed world. However, it is now
widely assigned by the attending clinician, is therefore subjective and is often as-
signed retrospectively. The Apgar score is also affected by factors that existed prior
to the onset of labour such as congenital abnormalities of the fetus and events im-
mediately after delivery. Since its introduction, the Apgar score has frequently been
misused to evaluate obstetric care or to predict long term neurological outcome.

The need remains to establish an objective, physiologically based, immediate as-
sessment of the health of the newborn infant which can be used to accurately evalu-
ate obstetric care. Such an assessment could be used to guide neonatal care, provide
individual feedback to clinicians, audit overall hospital performance, teach inexpe-
rienced clinicians and assess the impact of new technologies.

1.1 Umbilical Cord Acid-Base Analysis and The Need for an Expert System
An assessment of neonatal outcome may be obtained from analysis of blood in the
umbilical cord of an infant immediately after delivery [19]. The umbilical cord vein
carries blood from the placenta to the fetus and the two smaller cord arteries return
blood from the fetus. The blood from the placenta has been freshly oxygenated,
and has a relatively high partial pressure of oxygen (pO2) and low partial pressure
of carbon dioxide (pCO2). Oxygen in the blood fuels aerobic cell metabolism,
with carbon dioxide produced as ‘waste’. Thus the blood returning from the fetus
has relatively low oxygen and high carbon dioxide content. Some carbon dioxide
dissociates to form carbonic acid in the blood, which increases the acidity (lowers
the pH). If oxygen supplies are too low, anaerobic (without oxygen) metabolism can
supplement aerobic metabolism to maintain essential cell function, but this produces
lactic acid as ‘waste’. This further acidifies the blood, and can indicate serious
problems for the fetus.

A sample of blood is taken from each of the blood vessels in the clamped um-
bilical cord and a blood gas analysis machine measures the pH, pO2 and pCO2. A
parameter termed base deficit of extracellular fluid (BDecf) can be derived from the
pH and pCO2 parameters [21]. This can distinguish the cause of a low pH between
the distinct physiological conditions of respiratory acidosis, due to a short-term ac-
cumulation of CO2, and a metabolic acidosis, due to lactic acid from a longer-term
oxygen deficiency. An interpretation is then made based on the pH and BDecf pa-
rameters from both arterial and venous blood.

There are, however, a number of difficulties with such umbilical acid-base anal-
ysis. Difficulties in obtaining the samples can result in two samples from the same
vessel or mixed samples, whilst blood in the syringe can alter due to exposure to air.
Blood gas analysis machines require regular calibration and quality control checks
to ensure continuing performance to the manufacturer’s specifications, Careful ret-
rospective analysis of the acid-base results obtained during a trial on electronic fetal



monitoring [24] highlighted a 25% failure rate to obtain arterial and venous paired
samples with all parameters [23]. This sampling error rate is broadly in line with
other studies in which the importance of paired samples was recognised. The study
also highlighted the fact that considerable expertise was required to reliably recog-
nise these errors and accurately interpret the results.

To overcome these difficulties an expert system has been developed for the anal-
ysis of umbilical cord acid-base data, encapsulating the knowledge of leading ob-
stetricians, neonatologists and physiologists gained over years of acid-base inter-
pretation. The expert system combines knowledge of the errors likely to occur in
acid-base measurement, physiological knowledge of plausible results and statistical
knowledge of a large database of results. It automatically checks for errors in input
parameters, identifies the vessel origin (artery or vein) of the results and provides an
interpretation in an objective, consistent and intelligent manner.

The expert system was developed in three main incremental stages. Initially,
a crisp expert system was developed incorporating conventional forward-chaining
logic [11, 13]. The crisp system underwent an extensive software verification and
validation process and has been installed at over twenty five UK hospitals [10].
Next, the existing crisp system was extended by deriving a ‘preliminary’ fuzzy
expert system in which the crisp rules for interpretation of error-free results were
converted directly into a fuzzy rule set [12, 6]. This preliminary model was au-
tomatically tuned to match expert opinion using an algorithm based on simulated
annealing [7]. Finally, the limitations of the preliminary fuzzy expert system were
overcome through the creation of an ‘integrated’ fuzzy expert system in which fresh
knowledge elicitation resulted in new fuzzy rule sets for the tasks of identification
of vessel origin and interpretation of results [5]. The performance of both aspects
of this integrated system was validated in a further comparison with expert opinion
[9, 8].

2 The Crisp Expert System

2.1 Development of the Crisp Expert System
The expert system module has two main purposes;

� to validate the results and identify the vessel origin, and
� to interpret the results.

The development of the expert system took place in close collaboration with sev-
eral clinicians experienced in the interpretation of umbilical cord acid-base data. A
database of over 2 000 cord samples had already been collected, which was used to
formulate and verify the rules in conjunction with the experts’ knowledge of fetal
physiology. Frequency distributions of the pH, pCO2 and pO2 values were plot-
ted to establish the median values and lower 2.5th centile ranges of each; means and
standard deviations cannot be used on the data as all the distributions are skewed and
not Normal. Frequency distributions of the differences between vessels were also
plotted and were used to establish the minimum allowable differences for arterial-
venous paired samples. The populations were checked against other published data
to ensure that they were not specific to the local data.



Initially a set of rules was generated by two of the clinicians after a knowledge
elicitation session. These rules were then encoded and applied to the database in
a variety of ways. Firstly the full results were passed to the expert system and the
interpretations recorded. Next each input parameter was marked as containing an er-
ror in all combinations and these results were also passed to the expert system. This
generated the interpretations of the expert system with successively less information
and enabled the internal consistency of the rules to be checked. A number of other
techniques, such as passing plausible random numbers to the expert system, were
used to examine the behaviour of the expert system rules. The output generated
was examined by the clinicians and the rules modified to eliminate inconsistencies
and refine interpretations. This process continued iteratively until the rules were
deemed acceptable. The expert system was tailor written in the ‘C’ language and
featured a forward-chaining algorithm, suitable for the classification rules for both
validation and interpretation. The knowledge representation was organised as a set
of frames, with attributes such as pH, pCO2, BDecf, validation flags and originating
vessel (artery or vein) for each sample.

Each sample’s results are passed to the expert system module for error check-
ing. Two classes of errors are detected; analyser errors and physiological errors.
Analyser errors are reported at the time of sample measurement, such as when the
electrodes fail to reach a stable reading. Physiological errors are an additional class
of error detected specifically by the expert system by examining whether the results
are consistent with the range of possibilities for cord blood. For example, there is a
strong relationship between the pH and the pCO2, as shown in Figure 1, where the
99.9% confidence of prediction intervals have been calculated by regression anal-
ysis. Analysis of the residuals has shown that variance across the pCO2 axis is
not uniform for all pH, indicating that the prediction intervals are not strictly valid.
Hence, the exclusion limits were constructed beyond these intervals, widening with
the increased variance in pCO2 as pH decreases. Results that fall outside these lim-
its — caused, for example, by the presence of non-blood fluid in the sample — are
reported as errors. Once validated the vessel origin or the results is determined from
a simple rule base governing the minimum differences expected physiologically.

Paired results undergo a further, more sophisticated, stage of validation to en-
sure that they make ‘physiological sense’ when viewed together; if this is found not
to be the case, an error will be marked against the suspect results. If the pH and
pCO2 values for a sample are accepted as valid, the base deficit of the extracellular
fluid (BDecf) is calculated by equations from Siggaard-Andersen [22]. The pH and
BDecf of both vessels are examined to categorise the results into one of 54 interpre-
tations, ranging from ‘normal’ to ‘severe metabolic acidemia’. An interpretation is
performed on single samples as well as paired samples, although the information is
very much more limited and the user is advised to retry with a paired sample.

2.2 Evaluation of the Crisp Expert System
The crisp system underwent an extensive software verification and validation pro-
cess to ensure that it was safe for transfer to clinical use. This expert system does
not fall naturally into the traditional classification of either a decision making system
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Fig. 1. Scatter diagram of cord blood pH against pCO2 with 99.9% prediction limits and
expert system exclusion limits

or a decision support system. The expert system takes a set of data and performs
validation and interpretation of the data, but does not offer (even a suggestion of)
a decision for clinical action — it effectively transforms the four-dimensional nu-
merical input data into a single textual interpretation. Although the system’s textual
interpretation could be used to guide the provision of neonatal resuscitation or inten-
sive care, it does not recomend a decision for direct clinical intervention. Thus, the
requirements of evaluating the performance of the expert system for clinical release
were reduced to three objectives:

1. to ensure that the system was safe,
2. to ensure that the interpretations agreed with respected experts, and
3. to demonstrate the potential for economic benefit.

These three objectives were accomplished by carrying out the following tasks:
� subsystem validation — subsystem validation involved extensive ‘destruc-

tion testing’ of the software in which, as far as possible, every aspect of the
software was tested. Specifically, each line of code was examined to ensure
that its behaviour was well determined. The principle is that each subsystem
(function) should not be able to exhibit any behaviour other than anticipated.
Any non-anticipated behaviour is catered for through the use of a software
exception routine, such that a message is displayed to the user screen with a
description of the exception condition, and an instruction for the user to call
the technical support department. The few minor problems that this process
highlighted were corrected.



� face validation — during face validation the expert system’s performance was
subjectively compared against human expert performance [17]. Face valida-
tion was partially integrated into the development phase, during the process
of rule elicitation. Once the rules had been established, the complete rule set
was given to a number of other experienced clinicians. Each clinician was
asked to highlight any interpretation rules that they would disagree with. Ad-
ditionally, all ‘non-normal’ results that occurred during the initial field trials
were regularly reviewed by the resident experts. The result of this face val-
idation was the minor modification of one rule, with it being split into two
sub-rules. At the end of this process, no cases of non-trivial disagreement
between clinicians and expert system had been discovered. This was then
taken to be sufficient for an adequate demonstration of the legal criterion of
reaching the standard expected of an ‘informed and sensible body of opinion’
[25].

� hazard analysis — during hazard analysis a ‘black-box’ approach is used,
in which the behaviour of the system is observed in response to all conceiv-
able external events; this contrasts to the ‘white-box’ approach of subsystem
validation, in which the code itself is examined to anticipate failures. Each
potential hazard is identified and documented, and the appropriate behaviour
of the system is specified. The hazard is then instigated or simulated (as far as
possible) and the actual behaviour of the system is recorded. A suite of auto-
matic test procedures was created to simulate communications functions and
user inputs. The communication functions of the blood gas analyser were en-
capsulated in a simulation program, and a second program was created to run
the expert system and to simulate user input. A set of bespoke databases were
created to drive simultaneously both test programs with sets of key strokes to
simulate, sample results to transmit and the target states of the system. The
target states comprised the system screen that should be on view, the expected
expert system interpretation and the output databases. After all these tests had
been completed, and satisfactorily passed, the system was deemed to be func-
tionally correct according to specification.

� sensitivity analysis — sensitivity analysis is defined as “systematically chang-
ing expert system input variable values and parameters over some range of in-
terest and observing the effect upon system performance” [17]. The test suite
described above was utilised to perform a comprehensive sensitivity analysis
on the expert system categorisations. As there were too many possibilities of
input data to test exhaustively, a method was devised to pick a selection of
important results that lay in the middle and at the edges of all rule bound-
aries. Altogether almost 1 000 samples were created to test across the entire
range of each parameter. In each case the expected expert system category
was forecast and the test program verified that the specified result was ob-
tained. The process did highlight a small number of cases (six) in which the
interaction of validation and categorisation rules produced a different output
to that expected. These cases were closely examined by the experts and it



was judged that the actual output was more ‘reasonable’ than the anticipated
output. Hence the anticipated output was adjusted and the test continued.

� economic assessment — given that the expert system can be shown to be safe
(‘do no harm’), an economic assessment of the benefits of the expert system
may be enough to justify its use [16]. Umbilical cord acid-base assessment
has the potential to be of large economic benefit through the reduction in
unwarranted negligence litigation. This is a complex issue which cannot be
fully addressed here, but it has been shown [5, 10] that the improvement in
reliability of results obtained after the introduction of the expert system was
enough to warrant its extra running costs.

� clinical assessment — the expert system was placed at the local hospital and
at a nearby hospital for extensive field trials before release. During these trials
the output of the expert system was regularly reviewed for all abnormal cases
by the resident clinical experts and feedback was obtained from the users on
the usability of the system. This resulted in a small number of changes to the
user interface.

3 The Preliminary Fuzzy Expert System

3.1 Development of the Preliminary Fuzzy Expert System
A number of problems were identified in the implementation of conventional crisp
rules used in the initial system. The interpretation rules featured sharp boundary
cut-offs which were not representative of real decision making processes and did
not employ any form of uncertainty representation in the conclusion to imply a less
than certain diagnosis. It was felt that a fuzzy logic based expert system would offer
more realistic and acceptable interpretation. The use of fuzzy logic allows for more
gradual changes between categories and allows for a representation of certainty in
the rule consequence through the ability to fire rules with varying strength dependent
on the antecedents. Additionally, fuzzy logic can allow the results to be presented
to clinicians in a more natural form. An investigation was performed to convert the
crisp expert system directly into a fuzzy expert system. The purposes of this study
were:

� to determine the feasibility of converting the existing crisp rules into a set of
fuzzy rules, without the necessity of additional expert knowledge elicitation
sessions, and

� to investigate whether the fuzzy system would offer any improvement in per-
formance over the crisp system in its interpretation of results.

It was decided to restrict the initial fuzzy expert system only to the interpreta-
tion of true paired samples (samples verified as being an arterial and venous pair
with error free pH and BDecf parameters) as these rules represented a self-contained
subset of the crisp system. There were 21 such crisp rules operating on four input
parameters (pHA, BDA, pHV , BDV ) which needed conversion directly into equiv-
alent fuzzy rules. Examination of the crisp rules showed that each of these four
input parameters could be naturally divided into three fuzzy terms, corresponding



to meanings of low, medium and high. These four fuzzy input variables had the
position and width of their terms determined by the cut-offs encoded into the crisp
rules and were modelled with sigmoid membership functions. Thus, for example,
arterial pH fuzzy variable had its transition from low to medium at 7.05 as this value
is used throughout the crisp rules. The term-sets for each fuzzy input variable are
shown in Figures 2 and 3.

Two output fuzzy variables were used, severity of acidemia (acidemia) and dura-
tion of acidemia (duration). From the crisp rules it was determined that the acidemia
variable had five terms in its term-set: severe, moderate, significant, mild (non-
significant) and none; and that the duration variable had three terms: chronic, inter-
mediate and acute. These were also modelled with sigmoid membership functions,
with the base variable and cross over of each term determined arbitrarily. The term-
sets for the fuzzy output variables are shown in Figure 4.

3.2 Evaluation of the Preliminary Fuzzy Expert System
The fuzzy expert system re-analysed some 8 000 true paired samples and the out-
put was compared to the crisp system. The crisp system produced a category in
the range 80 to 120 which had been designed to correspond to an ordered scale,
such that 80 was the worst outcome (severe metabolic acidaemia) and 120 was the
best outcome (normal). It was immediately apparent that the ordering of classifi-
cations produced by the initial fuzzy expert system differed from that of the crisp
expert system. A test was designed to determine which order of results was the
most appropriate by comparing the expert systems to practising clinicians. The
clinicians were asked to rank a set of 50 difficult to classify results in order from
‘worst’ to ‘best’, in terms of likelihood of the infant having suffered damage during
labour. Two clinicians involved in the creation of the rules and four clinicians ex-
perienced in the interpretation of cord acid-base results took part in the comparison
study. They consisted of one Professor of Physiology, one Consultant, one Senior
Registrar, two Clinical Research Fellows and a Senior Midwife. Additionally, the
relationship of each system’s ordering to the results ordered by Apgar score at 5
minutes and 1 minute was examined. The Spearman Rank Correlation statistic was
used to compare the order of results.

The initial results of the agreement with clinicians are shown in Table 1. It can
be seen that the average inter-clinician correlation was very high (0.91), indicating
that the clinicians agreed with each other very well on the order of results. The crisp
expert system correlated reasonably well with the clinicians (0.80), but the perfor-
mance of the fuzzy expert system (fuzzy0) was significantly worse. The agreement
with the Apgar score is shown in Table 2. Given the fact that other clinical factors
affect the Apgar score, the precise level of clinicians’ agreement was not particularly
important, but the fact that there was significant correlation beyond chance indicates
that the clinicians’ ordering did reflect actual clinical outcome. The important point
is that the crisp expert system performed with a level close to the clinicians, but
again the fuzzy system performed significantly worse.
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Table 1. Results of clinicians’, crisp and initial fuzzy expert systems’ agreement with clini-
cians

Agreement Corr. (ρs) Sig. (p)
clinicians � clinicians 0 � 91 � 0 � 001
crisp system � clinicians 0 � 80 � 0 � 001
fuzzy0 system � clinicians 0 � 67 � 0 � 001

Table 2. Results of clinicians’, crisp and initial fuzzy expert systems’ agreement with out-
come (Apgar5, Apgar1)

Agreement Corr. (ρs) Sig. (p)
clinicians � outcome 0 � 47 � 0 � 001
crisp system � outcome 0 � 39 � 0 � 001
fuzzy0 system � outcome 0 � 17 � 0 � 001

3.3 Tuning the Preliminary Fuzzy Expert System
Clearly, the initial performance of the fuzzy expert system was a disappointment. It
performed worse that the crisp system both in comparison with expert opinion and
in comparison with the Apgar score. The design of any fuzzy model is a complex
multi-step process, in which the designer is faced with a large number of parameters
such as the type of inference methodology, the number of linguistic variables and
their fuzzy terms, the fuzzy rule set, which fuzzy operators to use, the shape and
location of membership functions, and the method of defuzzification. Unfortunately,
there is currently very little theoretical guidance as to which of the design choices
are appropriate for a particular domain. Given the poor performance of the fuzzy
system and the large number of alterations that could have been made to improve its
performance, an automatic method of tuning these design parameters was required.

In general, the formulation of an optimal fuzzy model in terms of its performance
at a given task in the particular domain is a problem of N-dimensional non-linear
optimization, in which N is very large even for the most trivial of fuzzy systems.
The simulated annealing algorithm is a general purpose algorithm for performing
approximate optimization in large dimensional problems [15]. It is generally useful
for combinatorial optimization problems, and/or problems where derivatives of the
cost function being optimized are not available. An adaptation of the Simulated
Annealing algorithm for continuous minimization by the Simplex method [18] was
applied to automatically tune the performance of the preliminary fuzzy model to the
clinical expert opinion already obtained [7].

The results obtained for the tuned fuzzy expert system (fuzzy
�
) are shown in Ta-

ble 3. It can be seen that the tuned system achieved an excellent agreement with the
clinicians and matched the clinicians in its agreement with outcome. Its modified



performance was better than the crisp expert system and effectively indistinguish-
able from the clinicians. This result was validated by examining the relative correla-
tion of the expert systems against Apgar scores from the entire database of cases of
true paired samples with abnormal acid-base status (n � 383, defined by the crisp
cut-offs pHA

� 7 � 05, BDA
�

12mmol.l � 1, pHV
� 7 � 10, and BDV

�
10mmol.l � 1).

The results in Table 4 were obtained, in which it can be seen that for these novel
abnormal cases, the fuzzy

�
system again achieved the highest correlation of all three

systems, at a level similar to that for the tuning set (Table 3).

Table 3. Results of the tuned fuzzy expert systems’ agreement with clinicians and outcome
(Apgar5, Apgar1) — compare these results to the pre-tuning results shown in Tables 1 and 2

Agreement Corr. (ρs) Sig. (p)
fuzzy � system � clinicians 0 � 93 � 0 � 001
fuzzy � system � outcome 0 � 51 � 0 � 001

Table 4. Validation of expert systems with outcome (Apgar5, Apgar1) for all abnormal cases�
n � 383 �

Agreement Corr. (ρs) Sig. (p)
crisp system � outcome 0 � 44 � 0 � 001
fuzzy0 system � outcome 0 � 26 	 0 � 001
fuzzy � system � outcome 0 � 52 � 0 � 001

4 The Integrated Fuzzy Expert System

4.1 Development of the Integrated Fuzzy Expert System
Although the preliminary fuzzy expert system was tuned to achieve a high level of
agreement with clinicians and to associate with Apgar scores, it was characterised
by a number of restrictions:

� crisp input variables — the variables to the fuzzy expert system were rep-
resented as fuzzy singletons, equivalent to the crisp value obtained from the
blood gas analyser;

� adapted crisp expert system rules — the rule set was adapted directly from
the crisp rule set, rather than from a rule set specifically designed for a fuzzy
expert system;

� restricted rule set — the rule set was restricted to the 21 crisp rules that dealt
with the interpretation of full paired results only, i.e. samples which the crisp
expert system had previously validated as comprising an error-free pH and
BDecf from both artery and vein; and



� crisp output variables — the two output variables acidemia and duration
elicited from the crisp rule set, although represented internally as fuzzy sets,
had been centre-of-gravity defuzzified and combined to give a single crisp
output.

The integrated fuzzy expert system was enhanced from the preliminary system in
several ways. Each of the input variables was fuzzified to have a width which explic-
itly represented that this input value was an estimate of the ‘true’ parameter value.
A new set of fuzzy rules was developed for both the vessel identification and the in-
terpretation capabilities. Fresh knowledge elicitation sessions were undertaken with
the same experts that had developed the crisp rules. Two sets of fuzzy rules were
employed; the vessel identification rules and the interpretation rules. The sample(s)
parameters are passed through the vessel identification rules to determine whether
they represent an arterial-venous pair. As two samples may both be accidentally
obtained from the vein, both from the arteries, one may be mixed arterial-venous, or
both may be mixed, a ‘safe’ vessel identification rule may be that if all parameters
differ by more than a specified uncertainty, then the samples can definitely be taken
as a true arterial-venous pair. The expected imprecision in each parameter was es-
tablished through a number of clinical experiments. A fuzzy rule-base was designed
to produce the behaviour that if (and only if) all parameters differed by more than
these values then the results were labelled as an arterial-venous pair, with smooth
transitions between each of the categories.

Once vessel identification has been carried out, the sample(s) are passed through
the interpretation rules. The basic principles of acid-base analysis elicited from the
experts were that: (i) acidemia is based on the absolute value of arterial pH (lower
arterial pH implies worse acidemia), refined by the value of the venous pH; (ii)
component is based on arterial BDecf (high BDecf implies metabolic component, low
BDecf implies respiratory component), refined by venous BDecf; and (iii) duration
is based on pH and BDecf differences (smaller differences imply chronic duration,
larger differences imply acute duration), refined by absolute arterial values. These
basic principles were encapsulated in the fuzzy rules such that there was smooth
transition over all input and output sets. This ensured that, as far as possible, contin-
uous changes in input parameters resulted in continuous changes in the fuzzy output
sets. Unknown values were explicitly represented such that results with invalid or
missing parameters could be processed by the fuzzy expert system.

Three fuzzy output variables (acidemia, component, and duration) were utilised
in rule consequences, with the availability of graphical output of the consequence
fuzzy sets. In addition to several alternative numerical representations of uncertainty
in the interpretation, linguistic approximation of the fuzzy output variables was also
introduced to allow textual output from the fuzzy expert system.

4.2 Validation of the Integrated Fuzzy Expert System
The cases for each task were selected by the independent engineer from the database
of over 10 000 results (approximately 400 abnormals), but this provided serious
problems. Cases could not be selected from the entire database on a uniform ran-
dom basis, as this would have resulted in approximately 75% paired arterial-venous



samples, and approximately 98% normal interpretations. In essence it was desired
to uniformally span the target outputs, so that a roughly even spread across the var-
ious output sets would have been obtained from the combined experts (and expert
system). However, this pre-supposed that the output was known — which it ob-
viously wasn’t for the validation study. Other studies [14] have used an in-house
expert to select difficult and/or representative cases, but due to the restricted num-
ber of experts available this was not feasible. The problem was solved by using the
crisp expert system categorisation already obtained on the data to guide the selection
of cases. Two sets of fifty cases were randomly selected to roughly span the crisp
expert system categorisations. This ensured that a few cases were obtained from
a variety of conditions, including results that had parameter errors, results from a
single vessel, and results ranging from metabolic acidemia to normal.

The centroids of the integrated fuzzy expert system were combined into a single
index by:

condition � acidemia �
component

20
�

duration
10

(1)

where the relative weighting of the three terms was determined empirically. Given
that the three output variables are arranged in such a way that low scores indi-
cate a worsening condition for the infant, to the extreme severe, metabolic, chronic
acidemia, this index can be thought of as indicating the health of the infant as rep-
resented by its acid-base balance at birth. The experts were again asked to rank fifty
cases from ‘worst’ to ‘best’, in terms of likelihood that the infant may have suffered
damage during labour, on the basis of the acid-base information alone.

The experts were given the two sets of pH and BDecf parameters from each of fifty
cases, and were asked to indicate their opinion of the closest linguistic interpretation
for three linguistic variables; acidemia, component, and duration. For each variable
they were instructed to mark zero, one or two terms to indicate the closest match.
This was specifically designed to allow the expert to mark two adjacent labels if they
felt a result fell in-between two labels, or to mark no label if there was insufficient
information, or no label was appropriate.

Spearman rank order correlation [20] can be used to determine the degree of as-
sociation between two sets of rank-ordered data. This was used to calculate the
difference between the expert system’s ranking of cases, specified by the index de-
scribed above, and the experts’ ordering. Note that this is effectively the same as
minimising the mean square error between the desired rankings and the obtained
rankings. To measure the agreement between two expert’s linguistic categorisation
a measure of (nominal) categorical agreement was required. The kappa statistic
[2] was used to measure exact agreement between experts and the expert system
linguistic outputs and weighted kappa [3] was used for partial agreement.

4.3 Results
The individual inter-expert and expert-fuzzy2 Spearman rank order correlation co-
efficients obtained are shown in Table 5. The average inter-expert agreement is
calculated by taking the average of each expert against the other three experts, and
the average fuzzy2 agreement by taking the average of agreement with all four ex-



perts. As can be seen, the fuzzy expert system performed exceptionally well against
experts A, B, and C. These three experts had taken place in the previous study,
and the average expert system agreement with these three is 0.94 — slightly lower
correlation was obtained against expert D, although the fuzzy expert system was
no worse than the other experts. These results are illustrated in Figure 5, in which
each of the expert’s rankings are plotted against the fuzzy expert system rankings
— perfect agreement would result in a diagonal line from (1,1) to (50,50).

Table 5. Agreement for numeric interpretation by rank order correlation

Expert A B C D fuzzy2

A — 0.899 0.888 0.577 0.950
B 0.899 — 0.908 0.701 0.931
C 0.888 0.908 — 0.537 0.925
D 0.577 0.701 0.537 — 0.606

Average 0.788 0.836 0.777 0.605 0.853
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Fig. 5. Graph of four experts rankings against the integrated fuzzy expert system

The results of the linguistic interpretation were investigated by means of com-
parison of the linguistic output of the acidemia, component and duration variables



with the categorisations of the experts. In all cases, both the inter-expert agreement
and the agreements between the fuzzy expert system and the experts were generally
found to be relatively low, even for weighted kappa. An attempt was made to inves-
tigate the effect of different pH and BDecf weights on these linguistic agreements,
but in general it was found that performance was not significantly increased above
the results achieved with default weights.

5 Summary

The successful development of a crisp expert system for umbilical acid-base assess-
ment was the first achievement of this work. The junior, or inexperienced clinician
does not, in general, have the knowledge to accurately assess umbilical acid-base
information. The crisp expert system assists such a clinician by producing a consis-
tent and reliable interpretation based on rules that embody expert knowledge. The
crisp expert system technology has been licensed to a commercial company, and
has been placed at over twenty hospitals in the United Kingdom. Expert systems
reaching routine clinical use have been rare, largely as a result of difficulties in clin-
ical validation. An expert system that offers advice for clinical intervention, albeit
as advice intended for decision support such that the final responsibility for deci-
sion remains with the clinician, is expected to be infallible [4]. The design of the
crisp expert system as an interpretation support system is believed to have greatly
contributed to its swift transfer to clinical use, through the reduction in validation
requirements.

Although the crisp expert system represents a major advance to the current clinical
assessment of umbilical acid-base, its lack of explicit uncertainty handling is a lim-
itation. The preliminary fuzzy expert system was developed to overcome this limi-
tation through the introduction of explicit uncertainty in the knowledge base, but it
was initially found to perform worse than the crisp expert system when compared to
human experts. This observation led to the development of the fuzzy model tuning
algorithm based on the method of simulated annealing to perform large dimensional
function optimisation. This was used to automatically tune the performance of the
preliminary fuzzy expert system to match the clinicians.

The final ‘integrated fuzzy expert system’ explicitly represented both imprecision
in the input data and uncertainty in the interpretive knowledge base. Modification
of the linguistic variables, fuzzy membership functions, and the fuzzy rule base
in response to fresh knowledge elicitation sessions resulted in a fuzzy model that
performed as well as the previously tuned system, but without the need for any sub-
sequent tuning. This integrated fuzzy expert system also incorporated a fuzzy rule
base for performing vessel identification, in addition to the rule base for performing
interpretation. The integrated fuzzy expert system was tested in a validation study
and was found to perform favourably compared to the human experts.

The achievements of this work can be summarised as having successfully mod-
elled the clinical expert knowledge necessary for the assessment of umbilical acid-
base information. The need for basic data validation of acid-base parameters prior to
interpretation has been largely accepted clinically. The requirement to interpret the



pH and BDecf from both arterial and venous samples in order to reach an accurate
assessment has also been accepted, although it is often still not done in practice. The
introduction of the crisp expert system is widely regarded as a significant clinical
achievement. The subsequent development of the fuzzy expert system, incorporat-
ing explicit uncertainty handling, has increased the embedded intelligence within
the expert system to a level which is indistinguishable from the best clinical experts.
This expert system represents a major step towards the establishment of an objective
measure of obstetric care.
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