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The human electroencephalogram (EEG) is often corrupted 
by ocular artefacts (OAs) caused by the movement of the eyes 
and/or the eyelids, making the recognition of abnormal EEG 
signals more difficult. The removal of OAs using conventional 
signal processing is complicated by the similarity between 
abnormal EEGs and OAs, which can lead to corruption of the 
EEG signal. The paper describes the development of a novel 
approach that uses expert system techniques to differentiate 
OAs from genuine EEG signals, enabling OA removal to be 
applied only where appropriate, and ensuring that clinically 
relevant EEG information is left unaffected. 
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The conventional electroencephalogram (EEG) and 
more recent brain mapping techniques for monitoring 
cerebral activity produce multiple complex signals. 
These signals are regularly and significantly corrupted 
by noise or artefacts, which are caused by the electrical 
activity of sources internal and external to the body. 
The large amplitude of these artefacts obscures the true 
cerebral signals and the similarity of some artefacts to 
cerebral signals of interest can make interpretation, 
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even by an EEG expert, more difficult. This is also true 
of systems for automated analysis of the EEG. The 
most significant type of artefactual signal present in the 
EEG is the ocular artefact (OA), caused by the move- 
ments of the eyes and/or the eyelids [1]. Attempts to 
remove OAs using conventional signal processing are 
complicated by both the spectral overlap of EEGs and 
OAs, and the similarity of their waveform shapes [2]. 

Current OA removal utilises adaptive filtering tech- 
niques [2][3], and it subtracts from the EEG a propor- 
tion of the signal measured close to the eyes (the 
electrooculogram (EOG)). This technique relies on a 
high correlation between the OA and the EOG, and a 
low correlation between genuine cerebral signals and 
the EOG. However, the abnormal EEG, caused by 
brain injury or illness, tends to manifest itself as a 
slowing of the usual cerebral rhythms and/or the pres- 
ence of sudden EEG waveforms [4][5]. The slowing of 
the EEG rhythms to 0.5-4.0 Hz (the EEG delta 
frequency band) brings the waveforms into the same 
frequency band as normal eye movements; transient 
EEG waveforms can be similar to blink-type artefacts. 
In addition to this, the EOG often contains signals of 
cerebral origin because of the lack of electrical isolation 
between the electrode positions. Under these conditions, 
the correlation requirements above are not satisfied and 
the adaptive filter cannot perform correctly. Figure 1 
shows a portion of an EEG record containing an abnor- 
mal waveform in both the EEG and EOG channels, the 
so-called bilaterally synchronous delta (BSD) wave 
caused by a gross cortical atrophy or loss of brain 
surface material. Previous work [1] has shown that, 
when such abnormal waves are present, the artefact 
correction process leads to a reduction in amplitude or 
waveform distortion of the desired signal. A number of 
schemes [4] have been attempted for automated analysis 
of epileptic EEGs, typified by sudden EEG waveforms. 
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Fig.re I Removal of ocular artefacts; (a) EEG record with abnormal slow waves in both the EOG and EEG channels, (b) effects of removing 
OAs in presence of slow waves 

In many cases, the value of such analysis is seriously 
impaired by false detections of epileptic activity due to 
blink-type artefacts. 

OAs therefore present a significant hurdle in the move 
toward automated EEG analysis. The main limitation 
of the current OA removal techniques is the inability to 
differentiate between artefactual and abnormal wave- 
forms [2]. An experienced electroencepha- 
lographer is often able to recognise OAs and can differ- 
entiate them from abnormal waveforms by examination 

of characteristic features of the signal. Thus, to over- 
come the deficiencies of the present methods, it is neces- 
sary to incorporate some intelligence into the correction 
algorithm to determine when and where to apply OA 
removal, and to distinguish between different artefacts, 
allowing a suitable adaptive filter to be applied [6][7]. 

This paper details the development of a novel 
approach which combines expert system techniques 
with conventional signal processing to produce an intel- 
ligent signal processing tool. This approach allows 
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Figure 2 Conceptual comparison between conventional OA removal 

reasoning about signal qualities to control conventional 
signal processing, enabling OAs to be removed only 
where necessary, leaving clinically relevant EEG infor- 
mation unaffected. 

Figure 2 illustrates conceptually the intelligent OA 
removal system (IOARS). Digital signal processing 
(DSP) modules are utilised to extract time and 
frequency domain features, necessary for OA identifica- 
tion, from 2 s blocks of 16-channel EEG/EOGs. 
Reasoning, using heuristic rules present in the expert 
system, and the extracted features allow blocks contain- 
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ing OAs to be identified. A positive identification of an 
OA allows an adaptive filter appropriate to the type of 
OA to be applied. 

SYSTEM DEVELOPMENT 

Knowledge acquisition 

The rules for identifying OAs were represented as stan- 
dard productions, that is as IF-THEN rules, which is 
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the most commonly used approach in medical expert 
systems [8][9] because of its simplicity and ease of 
understanding. The rules operate on explicit signal qual- 
ities, that is intrachannel and interchannel features, 
rather than on patient information such as patient age, 
sex etc. The EEG/EOG signals were recorded over a one 
year period from a variety of normal and abnormal 
patients using standard EEG electrode positions, as 
illustrated in Figure 3, and they were stored in an EEG 
database. From the acquired patient data, 64 2 s 
segments of data were selected for knowledge elicita- 
tion. Structured interviews with two experts (one 
consultant clinical neurophysiologist and one chief EEG 
technician) were undertaken in order to classify each of 
the segments into one of the following four categories: 

• only artefacts present, 
• only cerebral signals present, 
• both artefact and cerebral signals present, 
• neither artefact nor cerebral signals present. 

Each classification was based on only the signal features 
and interchannel relationships to allow us to separate 
the rules based on measured data from those based on 
contextual information, such as patient history and age. 
During the analysis each expert was encouraged to 
describe any problems and to note any points of inter- 
est on the appropriate analysis segment. Figure 4 shows 
a typical EEG trace showing four 2 s segments. 

Waveforms of significance to the expert have been noted 
by either underlining or by writing the appropriate identi- 
fication number next to it. The overall classification for 
each analysis segment is noted at the bottom of each 
segment and is dependent on the contents of the segment. 
In Figure 4, the EEG expert has identified all four 
segments as containing slow waves attributable to OAs, 
and segments 2, 3 and 4 as containing additional suspected 
abnormal slow waves. The abnormal slow waves can be 
seen clearly in channels 14 and 15 and are identified 
because of their measurement position on the scalp. 
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Two rules inferred from this data were the following: 

RuE A: 

IF 

THEN 

slow waves are present on channels 1, 5, 9 
and 13 
there is an increased reason to believe that 
OAs are present. 

Rule B: 

IF slow waves are present on channels 14 or 15 
THEN there is an increased reason to believe that 

signals of nonocular origin are present. 

In the first rule, channels 1, 5, 9 and 13 are the channels 
closest to the eyes, and therefore it is unlikely that 
OAs are present if there is no activity in any of these 
channels. 

Uncertainty management 

The uncertainty of each rule is represented by feature 
uncertainty and rule uncertainty. Feature uncertainty 
may be caused by a combination of measurement errors 
and natural biological variations in signals. The utilisa- 
tion of fuzzy set theory [10] allows signal frequencies to 
be attributed to recognised EEG frequency bands (see 
Figure 5) with a certainty based on the frequency band 
set membership. A frequency transformation of the 

signals of Figure 4 shows that the slow waves in chan- 
nels 1, 5, 9 and 13 have a frequency of approximately 
2.5 Hz. Referring to Figure 5, it can be seen that this 
frequency falls in the delta frequency set with a set 
membership of 1.0. Each clause in the IF statement of 
rule A will therefore be true with a certainty of 1.0. 

Waveforms with a frequency near the boundaries of 
the conventional EEG frequency bands (e.g. delta band 
0-4 Hz) will be interpreted as belonging to two EEG 
frequency bands. The membership of the sets will vary 
according to the frequency and a small variation in the 
frequency will only change the value of this member- 
ship. Similarly, signal amplitude fuzzy sets are utilised 
to represent signal strength. 

Rule uncertainty was defined as the confidence an 
expert had in a particular rule. Initially, this was repre- 
sented by a heuristic value between 0 and 1 elicited from 
the expert. Subsequent system evaluation provided a 
statistical value with which these were compared. 
The rule confidence has the effect of attenuating the 
combined certainty of the individual rule clauses. The 
final confidence CF in a segment classification CL, given 
the feature evidence FE, is calculated as 

CF(CL.'FE) = MB(CL.'FE) - MD(CL.FE) 

where the measure of belief MB and the measure of 
disbelief MD both range from 0 to 1. MB(CL:FE) is 
updated by a new rule (RULE) and feature evidence as 
follows: 

MB( CL:FE, Conf(RULE)) = MB( CL.'FE) 
+ {Conf(RULE) 
× [1 - MB(CL.'FE) ] } 

where the rule confidence Conf(RULE) is calculated as 

Conf(RULE) = min {Conf(FEATURE1), 
Conf(FEATURE2), 
... Conf(FEATUREn)} 

and the feature confidence Conf(FEATURE) is 
obtained from Figure 5. 

It is assumed that each successful rule provides 
further evidence to support the belief in a classification. 
This method has the advantage that, unlike in other 
methods of combination, successive evidence increases 
the certainty asymptotically towards a certainty of 1, or 
complete belief. Also, the order of acquired evidence is 
unimportant. 

Rules are executed using a combination of forward 
and backward chaining techniques to navigate a 
segment classification decision tree (see Figure 6). Depth 
first, backward chaining is employed as the principal 
rule search technique [11]. This allows the low level 
signal features to be operated on. However, the classifi- 
cation of previous segments allows a forward chaining 
approach to be taken to current segment classification. 
Contextual information enables the decision tree to be 
restricted, or pruned. The following rule is an example: 

Rule C." 

IF 

THEN 

abnormal waveforms have been identified in 
previous segments 
there is an increased reason to believe that the 
present segment contains abnormal waveforms. 
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The addition of contextual information allows a mixed 
search strategy to be employed. Contextual data allows 
inference to a conclusion by forward chaining and then 
additional data can be sought to confirm the conclusion 
by backward chaining. This more closely matches the 
experts' method of analysis as well as improving the 
performance of the system. 

higher frequency cerebral potentials which appear as 
artefacts in the EOG. Finally, each 8 s block is divided 
into four 2 s analysis segments in preparation for 
feature extraction. 

Feature extraction 

I M P L E M E N T A T I O N  

The intelligent OA removal system can be divided into 
four main functional blocks as illustrated in Figure 7. 
Each functional block has been implemented in soft- 
ware using a mixture of Prolog, C and Assembly 
languages on an IBM compatible personal computer. 

Signal preprocessing 

The EEG and EOG data are fetched in 8 s 16-charmel 
blocks, and the mean of each signal is removed to 
minimise DC offset. EEG and EOG signals are derived 
from the data to provide a single left and right EOG 
signal and 16 EEG signals that reflect the activity in the 
left, right, front and back regions of the scalp. Analysis 
of the spectral characteristics of EEGs and OAs has 
shown that most of the energy lies in the regions 0--30 
Hz and 0-5 Hz, respectively. For this reason, EOG 
signals are bandlimited to 0.5-5.0 Hz and EEG signals 
are bandlimited to 0.5-30.0 Hz. Finite impulse res- 
ponse (FIR) digital filters were used in both 
cases. Bandlimiting EOG signals has the advantages of 
attenuating very low frequency potentials caused by 
skin/electrode resistance variations and also attenuating 

Signal features are extracted from three domains: 

• the frequency domain, 
• the time domain, 
• the contextual domain. 

Frequency domain features include the frequency, 
magnitude and phase of a wave. Time domain features 
include wave duration and shape. Contextual informa- 
tion includes patient information (age, sex), and inter- 
channel differences, as well as immediate past, current 
and accumulated past features. Frequency and time 
domain features are extracted using Turbo C proce- 
dures. The power spectral density of each 2 s analysis 
segment is calculated for each channel using fast 
Fourier transforms (FFTs) for convenience. From this, 
spectral peaks are identified by comparison with a 
magnitude threshold related to the average power in the 
standard EEG frequency bands. The first four signifi- 
cant and distinct peaks in each channel are then used to 
compile a feature matrix that contains the magnitude, 
centre frequency and threshold width for each peak. 
Figure 8 illustrates the process of spectral feature 
generation from a simplified analysis segment. 

The feature matrix is read by Prolog routines which 
are used to convert the numerical features into symbolic 
tokens. The symbolic tokens are used to create individ- 
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ual spectral feature facts in a dynamic knowledge base 
that changes for each analysis segment. For example, 
the waveforms in channels 1 and 5 of Figure 8a are 
transformed to the clear spectral peaks at a frequency of 
2 Hz in Figure 8b. The feature matrix of Figure 8c shows 
that, for channel 1, only one spectral peak greater than 
the threshold exists. This spectral peak has a centre 
frequency of 2.0 Hz, a magnitude of 1.5e9, and a thresh- 
old width of 1.2 Hz. Figure 8d shows the respective 
tokenised feature fact which will be stored in the 
dynamic knowledge base. The feature fact states that a 
spectral peak exists in channel Fp2-F4 (channel 1), that 
it is the first spectral peak, and that it is attributable to 
the delta frequency band. The certainty of the fact is 
represented by the final figure in parenthesis, i.e. 1.0, 
and it is determined by the fuzzy set technique detailed 
above. Incorporation of fuzzy set theory allows a spec- 
tral peak which has a frequency close to one of the 
conventional EEG frequency band boundaries to be 
represented as two feature facts in the dynamic knowl- 
edge base. For example, if the spectral peak of Figure 8c 
had a centre frequency of 4.0 Hz, the respective feature 
facts would be as follows: 

["feature", 'grp2-f4 '', "peak 1", "delta", "med-mag", 
"med-freq"] [0.5] 

where "theta" is the next adjacent EEG frequency band. 
The last two elements in the first set of parentheses 

for each spectral feature fact relate to the magnitude 
and frequency of the respective spectral peak. These 
values are used for comparisons of the power distribu- 
tion of the scalp. 

Inference engine 

The inference engine comprises the knowledge base and 
the reasoning mechanism. Both of these have been 
implemented using Prolog. The knowledge base consists 
of 40 rules and 54 conditions to those rules. A sample of 
these rules are as follows: 

Rule 2: 

Segment contains no slow waves (1.0) 
IF no significant spectral activity exists in the 

delta band. 

Rule 4: 

Segment contains artefact only (0.93) 
IF slow activity is maximum in the 

channels 
AND prefrontal channels are symmetrical ["feature", '~fp2-f4", "peak 1", "theta", "med-mag", 

"med-freq" [0.5] 
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AND EOG channels are symmetrical 
AND slow waves only appear in frontal channels. 

Rule 12: 

Segment contains artefact only (0.4) 
IF slow activity is maximum in the frontal 

channels 
AND slow waves only appear in anterior channels 
AND no slow waves exist in the EEG that are not 

present in the EOG. 

Rule 20: 

Segment contains both artefact and abnormal waves 
(0.8) 
IF 

AND 
AND 

slow activity is not maximum in the frontal 
channels 
prefrontal channels are symmetrical 
slow waves exist in the EEG that are not 
present in the EOG. 

Rule 23: 

Artefact only contains eye movements (0.9) 
IF EOG channels are symmetrical 
AND slow waves are attributable to more than one 

electrode 
AND slow activity is maximum in the EOG 

channels. 

Rule 28: 

Eye movements contains blink artefact (0.9) 
IF slow waves are larger in prefrontal channels 

than in temporal 
AND the slow waves are of short duration 
AND the slow waves are in phase in temporal 

channels 
AND the slow waves are phase reversed around the 

eyes. 

nels. For OAs to be present, the delta waves must be 
maximum in the EOG channels and symmetrical. Rule 
23 identifies a segment as containing only OAs by exam- 
ining the spectral symmetry of the EOG channels. The 
EOG channels for the segment in Figure 8 are identified 
as possessing symmetrical power spectra, and they are 
therefore furthur identified as containing only OAs. 

For OA identification, the phase relationship between 
signals close to the eyes is also of importance. Vertical 
eye movement (VEM) and blink produce signals that 
are in phase on both sides of the scalp, while horizontal 
eye movement (HEM) will produce convergent signals 
on one side of the scalp and divergent signals on the 
other. The time courses of OAs are also different: blinks 
produce large, short duration, negative potentials above 
the eye, and small positive potentials below the eye. 
VEMs and HEMs produce longer duration potentials. 
Rule 28 examines the time domain features of the 
waveforms contained in the analysis segment to further 
identify the contents of the analysis segment. The wave- 
forms of Figure 8 are finally identified as being attribut- 
able to blink-type OAs with a sufficient measure of 
belief, and the OAs are removed by applying the signals 
to an adaptive filter with coefficients preset to the values 
that are most suitable for blink-type OAs. 

The knowledge base is a separate ASCII file divided 
into two sections. The static, or long term, knowledge 
base contains the rules and signal information, i.e. 
channel numbers and their location. The dynamic, or 
short term, knowledge base contains the extracted 
segment features from the current analysis segment and 
the contextual features obtained from other segments. 
Separation of the knowledge in this manner allows easy 
modification. 

The static knowledge can be classified as follows: 

• textual rules, 
• textual conditions, 
• numerical conditions, 
• feature demons, 
• contextual facts. 

The key features utilised by the inference engine in clas- 
sifying each segment and identifying OAs are the posi- 
tion of the maximum delta band spectral magnitude, the 
similarity of the spectral content in the left and right 
EOG signals, the cerebral distribution of spectral peaks 
in the delta band, and the correlation between combi- 
nations of EOG and EEG signals. 

Ocular artefact potential is strongest in the anterior 
regions of the scalp, around the eyes, and it is also 
symmetrical. Rules 4 and 12 identify a segment as being 
only artefactual if delta activity is maximum in the 
frontal channels. Either rule will be found to be true 
when all respective conditions are satisfied with some 
degree of certainty. Rule 12 is only tested when Rule 4 
fails. The confidence in successive rules decreases as 
these conditions are relaxed. For example, Rule 4 has a 
greater number of signal symmetry conditions than 
Rule 12, and is therefore given a higher confidence than 
Rule 12 should it be satisfied. The waveforms in Figure 
8a satisfy all the conditions of Rule 4. 

Segments identified as containing slow waves only 
attributable to artefacts are further identified as 
containing only OAs by examination of the EOG chan- 

An example of a simplified knowledge base is given 
below: 

text-rule(3,1,"segment","no significant delta waves",[4]) 
text-rule(12,0.4,"segrnent","artefact only", [5,13,16]) 
text-cond(3,"any significant spectral activity exists in 

the delta band") 
text-cond(4,"not any significant spectral activity exists 

in the delta band") 
text-cond(5,"slow activity is maximum in the frontal 

channels") 
text-cond(6,"not slow activity is maximum in the 

frontal channels") 
text-cond(13,"slow waves only appear in anterior 

channels") 
text-cond(14,"not slow waves only appear in anterior 

channels") 
text-cond(15,"slow waves exist in the EEG that are not 

present in the EOG") 
text-cond(16,"not slow waves exist in the EEG that 

are not present in the EOG") 
num-cond(3,["feature","","","delta","","",]) 
num-cond(5,["max-front"]) 
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num-cond(14,["posterior-features"]) 
num-cond(15,["non-eog"]) 

cl(["non-eog"],l],[ 
["intpred","channel","X","eeg"], 
["feature","X","","delta","", A"], 
["intpred","notpeak","peak","A"], 
["anyeog","A"], 
["intpred","notpeak","peak","A"]]) 

cl(["any-eog","A"], [], [ 
["intpred","channel","Y","EOG"], 
["feature","Y",'"',"delta","","A"]. 
["intpred","assertpeak","peak","A"], 
["intpred","cutback","","'q]) 

d(["any-eog","A"],O,[ " 
["intpred","true","",'"']]) 

cl(["anterior",'3Cp2-f 8"],[1],[]) 
channel(0,'~fp2-f 8","EOG") 
freqbounds("delta",6,18) 

In order to provide the explanation facilities crucial to 
this system, rules and conditions are stored in a textual 
format. This is augmented by the necessary numerical 
rules which operate on the features obtained from the 
data. For example, examination of the example knowl- 
edge base above shows the equivalence of textual condi- 
tion 15 and numerical condition 15 which test for the 
existence of delta spectral peaks present in the EEG but 
not in the EOG. Condition 15 is the inverse of condition 
16. Condition 15 is implemented by the use of the 
feature demon 'non-eog'. The feature demon is a small 
'meta'level representation [12] of a Prolog clause that 
examines the actual feature facts extracted from the 
analysis segment. The metalevel representation allows 
the knowledge base to contain Prolog type code as 
conditions. Condition 15 will be found to be false if 
delta frequency waveforms are found in the EEG that 
are uncorrelated with those in the EOG, causing condi- 
tion 16 to be found true with the appropriate certainty. 

EVALUATION 

In order to evaluate the performance of the system, 140 
2 s 16-channel EEG/EOG segments were randomly 
selected from the patient database. These segments had 
not previously been used in the analysis. 40 segments 
were selected from normal volunteer data containing 
various types of OA, and 100 segments were selected 
from the patient data containing abnormal EEGs. The 
abnormal EEG segments contained a wide variety of 
both OAs and abnormal slow waveforms. 

The selected segments were presented to an expert for 
each segment to be classified into one of the four cate- 
gories detailed above in a similar manner to that used for 
knowledge elicitation. Abnormal classification by the 
expert was based on the slow wave or delta band contents 
of each segment, and not on any higher frequency abnor- 
malities. Segments were also presented to the intelligent 
OA removal system which was to produce a similar clas- 
sification. For the purposes of this initial evaluation, the 
knowledge base could only call upon features extracted 
from the time and frequency domain. 

The operation of the present system is limited to 
segment identification only. OA removal is achieved by 
implementing a realtime adaptive filtering algorithm for 

those segments identified as containing OAs only. The 
OA-dependent starting coefficients for the filter are 
derived from offline analysis using multiple regression 
of segments containing the respective OA. These coeffi- 
cients preload the adaptive filter and are then adjusted 
in realtime, for the duration of the segment only, using 
the recursive least squares algorithm [3]. The final coef- 
ficients are then stored and act as the starting coeffi- 
cients for the next segment containing that particular 
type of OA. Figure 9 shows an example of the output 
obtained from the IOARS. This data is the same as that 
in Figure 1. Segments 1, 2 and 3 are classified as OA 
only. Segment 4 is classified as containing abnormal 
slow waves because of the spread and correlation of the 
slow waves. The adaptive filter was only applied to 
segments 1, 2 and 3. Segment 4 was left unaltered. This 
has the effect of avoiding the corruption of the abnor- 
mal slow waves caused by the conventional OA 
removal. 

DISCUSSION 

Overall, there was an agreement of 94% between the 
EEG expert and the intelligent OA removal system in 
identifying segments containing OAs only, and an 
agreement of 84% for segments containing mixtures of 
OAs and abnormal slow waveforms. It is certain that 
the use of more than one expert would create differences 
of opinion for a small number of segments, but overall 
the results are very encouraging considering the 
restricted number of features that the system is able to 
operate on. The greatest source of error can be seen to 
be caused by the system identifying segments that 
contain only abnormal slow waves as containing both 
OA and abnormal slow waves. This is caused by the 
limitation of a restricted feature set. The segments that 
were wrongly classified all contained slow waves that 
were maximum in the frontal and EOG channels and 
were distinguishable in phase over the entire scalp. The 
rule set correctly classified these segments as possibly 
containing both OAs and abnormal waves with a low 
degree of certainty. Given the fact that the waveforms 
were maximum in the frontal channels, symmetrical in 
both hemispheres, and present in posterior electrodes, 
this was the safest and only conclusion that could be 
drawn under the circumstances. It was considered better 
to err on the side of caution rather than to remove any 
EEG information by unnecessary OA removal. In order 
to overcome this discrepancy, it will be necessary to 
incorporate a number of interchannel correlation 
features. These, together with more important contex- 
tual features, will considerably improve the results. The 
authors are currently investigating the use of neural 
network techniques at the feature extraction stage to 
improve the identification and location of individual 
artefactual waveforms. The expert used in the prelimi- 
nary evaluation of the system contributed to the devel- 
opment of the rule base, although the bulk of the 
knowledge was provided by the other expert. At the 
next stage of our work, the system will be evaluated 
with the help of experts at other centres after appropri- 
ate enhancements. 

Realtime operation is presently hindered by the vari- 
able time taken for inferences to be made and by the 
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necessity to perform multiple F F T  calculations using 
the single PC processor during the feature extraction 
stage. This can be overcome by using multiple dedicated 
signal processing hardware and faster PC hardware. 
This, together with a refined inference mechanism and 
careful knowledge base organisation, will permit real- 
time intelligent OA removal. 

The advantages of  this directed and selective 
approach to intelligent noise removal is clear. Firstly, 
segments containing genuine cerebral signals of  possible 
diagnostic importance are left unaffected, and, 
secondly, individual artefacts within a segment are 
removed using the most  appropriate  filter on the basis 
of  the removal  of  previous similar artefacts. 

The methods detailed in this paper have been shown 
to overcome some of  the main limitations encountered 
with the conventional method for realtime OA removal 
from EEGs. The current system is being incorporated 
into a self contained decision support  tool for use in the 
clinical environment. Developmental  aspects of  the 
intelligent OA removal system not covered in this paper  
include the user interface and library facilities which will 
form a crucial part  of  the system. Current work is 
concerned with extending the techniques used in the 
intelligent OA removal system to general automated 
E E G  analysis to improve the reliability of  any decisions 
made. Automated  E E G  analysis systems aim to allevi- 
ate the burden of  routine E E G  analysis for the clinician. 
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