
 
 

  

Abstract—The number of people that now go on to develop 
Alzheimer’s disease (AD) and other types of dementia is rapidly 
rising. For maximum benefits from new treatments, the disease 
should be diagnosed as early as possible, but this is difficult with 
current clinical criteria.  Potentially, the EEG can serve as an 
objective, first line of decision support tool to improve diagnosis.  
It is non-invasive, widely available, low-cost and could be 
carried out rapidly in the high-risk age group that will develop 
AD. Changes in the EEG due to the dementing process could be 
quantified as an index or marker.   In this paper, we investigate 
two information theoretic methods (Tsallis entropy and 
universal compression algorithm) as a way to generate 
potentially robust markers from the EEG. The hypothesis is 
that the information theoretic makers for AD are significantly 
different to those of normal subjects.  An attraction of the 
information theoretic approach is that, unlike most existing 
methods, there may be a natural link between the underlying 
ideas of information theoretic methods, the physiology of AD 
and its impact on brain functions.  Data compression has not 
been investigated as a means of generating EEG markers before 
and is attractive because it does not require a priori knowledge 
of the source model.  In this paper, we focus on the LZW 
algorithm because of its sound theoretical foundation.   We used 
the LZW algorithm and Tsallis model to compute the markers 
(compression ratios and normalized entropies, respectively) 
from two EEG datasets. The results show that the information 
theoretic methods can be used to compute EEG markers for AD. 
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I. INTRODUCTION 
S more and more people live longer, the number of 
people that develop Alzheimer’s disease (AD) and other 

types of dementia is rapidly rising. Treatments to slow the 
progress of the disease are being developed, but to get 
maximum benefits the disease should be diagnosed as early as 
possible.  However, the delay between actual onset and 
clinical diagnosis of AD using the current clinical criteria 
may be up to 5 years so that a significant amount of 
irreversible cell damage will have occurred by the time a 
diagnosis is made. Potentially, the electroencephalogram 
(EEG) may be used as an effective first line of decision 
support tool to improve diagnosis of AD.  It is 
non-invasiveness, widely available, low-cost and could be 
carried out rapidly in the high-risk age group that will develop 
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AD.  
EEG changes could be detected fairly early in the 

dementing process and the changes could be quantified as an 
index or marker. Nonlinear methods provide a potentially 
powerful method for deriving suitable markers, and recent 
studies suggest that they are better suited to EEG analysis 
than conventional approaches [1][2]. However, there are 
several limitations of existing nonlinear measures which 
impact on their potential usefulness as a marker [1][2].  

In this paper, we investigate an important class of nonlinear 
methods, information theoretic approaches, which offers a 
potentially powerful method for deriving robust markers. An 
attraction of these approaches is that, unlike most existing 
methods, there may be a natural link between the underlying 
ideas of information theoretic methods, the physiology of AD 
and its impact on brain functions [3]. Conceptually, 
information processing activities in the brain are thought to be 
reflected in the information content of the EEG. Thus, the 
effects of damage or disruption to nerve cells/pathways in the 
brain due to AD may be reflected in information theory-based 
markers. By implication, changes in the features of the EEG 
due to AD may be related to changes in the information 
content of the EEG.  

There have been recent attempts to develop nonlinear AD 
measures based on information theory (e.g. sample entropy), 
but these tend to approach the problem from nonlinear 
dynamical concepts [2], and the performance is sensitive to 
values of the parameters of the algorithm used, such as 
embedding parameters.  In this paper, we present two 
different information theory-based approaches and their use 
to generate markers from the EEG. In particular, we seek to 
exploit knowledge from universal data compression methods 
and entropy to quantify the EEG.  The hypothesis is that the 
information theoretic measures for AD are significantly 
different to those of normal subjects. 

The rest of the paper is organized as follows. In Section II, 
a brief description of the two information theoretic methods is 
given, and in Section III we present details of the data used in 
the study. The results from the use of the two information 
theory methods are presented and discussed in Section IV, 
and finally Section V concludes the paper. 

II. INFORMATION THEORETIC METHODS 
 A key information theoretic measure that can be computed 

from the EEG record is the entropy. Entropy is a fundamental 
parameter and provides a measure of the information content 
of the data [4]. In terms of the EEG it can be viewed as a 
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measure of the uncertainty or order/disorder in the time-series 
[4], and it is low for an ordered source and maximum for a 
disordered source. 

Various methods exist for estimating the entropy of a 
time-series such as the EEG [4][5], but most are based on the 
pioneering work of Shannon [6]. An entropy measure 
(Shannon’s entropy) can be calculated directly from the EEG 
data samples by examining the probability distribution of the 
amplitudes of the data values. An alternative measure due to 
Tsallis generalizes the Shannon entropy and assumes that the 
EEG is a non-extensive source [7]. For computing the EEG 
markers, normalized entropies are used to ensure that the 
entropy lies between 0 and 100%, making it easier to compare 
markers for AD and for normal subjects. The normalized 
Tsallis entropy is show in (1):  
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where N  is the number of states that the amplitudes of the 
EEG are quantized into, ip is the probability associated with 

the thi state, and q  is the Tsallis parameter. 
In practice, changes in the EEG activities (e.g. due to 

changes in the condition of the subject or experimental 
conditions, such as during cognitive and event-related 
potential (ERP) tasks) mean that the source model is not fixed 
and so most methods of computing estimates of entropy may 
not be appropriate in all cases.  Ideally, what is needed is a 
method that can be used to estimate information theoretic 
EEG measures regardless of the underlying source model. 
Potentially, universal compression algorithms provide a way 
to satisfy such a requirement because they adapt to the source 
statistics and do not require a priori knowledge of the source 
model [8]. Given that compression and entropy [9] are 
related, this provides a means of estimating entropy and other 
information theoretic measures. From information theoretic 
perspective, compression involves reduction in the 
redundancy in the data. In lossless compression, the lower 
bound is the entropy. Universal method provides an 
alternative approach to estimate the entropy such that the 
estimations converge to the ‘true’ value of entropy for almost 
every source. Potentially, these may be more suited to the 
analysis of EEG in a wide range of situations where the 
features change than model-based approaches which look for 
probability of occurrence.  

Data compression has not been investigated as a means of 
generating EEG markers before.  In this paper, we focus on 
the LZW algorithm because of its sound theoretical basis 
[8][10] [11].  

The LZW (Lempel-Ziv-Welch) algorithm is a variant of 
the basic Lemple-Ziv (LZ) algorithm [8][10][11]. Like the LZ 
algorithm, it adapts to the source statistics and so requires no 
prior information about the input data and exploits different 
types of redundancies in the data.  Although the compression 
effectiveness is about the same, LZW is simpler. 

The LZW examines the characters in the input data stream 
serially using a parsing algorithm and from this dynamically 
builds a string table.  For the EEG, the characters are derived 
from the data samples. As the algorithm examines the 
characters in the input data stream, character strings that have 
not been encountered before are added to the string table and 
each given a fixed, unique code (typically, 12 bits long). By 
the end of the compression process, the string table 
essentially represents the input data in compressed form. The 
effectiveness of compression may be expressed as the ratio of 
the number of bits needed to represent the data before and 
after compression. The more times character strings are 
repeated in the input data, the longer the strings in the table 
and the better the compression achieved. The LZW 
compression is reversible and so the original data can be 
recovered without loss by decompression. 

III. SUBJECTS AND EEG RECORDINGS 
In our experiment, we applied the LZW algorithm and 

Tsallis entropy to two datasets: Datasets A and B, which were 
obtained from Derriford Hospital and had been collected 
using normal hospital practices in conjunction with a strict 
protocol, and the classification between normal and 
Alzheimer’s disease was taken from the written hospital 
diagnosis notes. 

A. Subjects 
Dataset A includes 3 Alzheimer’s patients, and 8 

age-matched controls (over 65 years old) of which all have 
normal EEGs confirmed by a consultant clinical 
neurophysiologist. Within age-matched controls, one of the 
volunteers (Vol1) is of particular interest because it 
subsequently developed to AD, therefore potentially in 
transition from normal to AD. 

Dataset B includes 24 normal subjects and 17 probable 
AD, which are not perfectly age matched. In normal groups, 
mean age is 69.4±11.5, minimum is 40, maximum is 84, 42% 
are male; in AD group, mean age is 77.6±10.0, minimum is 
50, maximum is 93, 53% are male. These probable AD 
subjects were not previously diagnosed, and still in the early 
stages of exhibiting symptoms; some of them were not 
referred for dementia diagnosis but came in for investigation 
of other disease, such as seizures.  

B. EEG recordings   
Dataset A was recorded using the traditional 10-20 system 

in a Common Reference Montage (using the average of all 
channels as the reference), and later converted to Common 
Average and Bipolar Montages in software.  

Dataset B was recorded using the modified Maudsley 
system which is similar to the traditional 10-20 system. 

In both Datasets, the EEG recordings include various 
states: awake, hyperventilation, drowsy and alert with periods 
of eyes closed and open. The sampling rate was reduced from 
256Hz to 128Hz by averaging two consecutive samples for 
storage reasons, which was confirmed by analysis to have no 
significant effect on the data because the band of the interest 
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is low and less than 30Hz [1].  A predetermined protocol was 
applied to avoid the possibility of inadvertently or 
unconsciously selecting only data segments that suitable for 
analysis. Thus, whole recordings including artefacts were 
used without à priori selection of elements ‘suitable for 
analysis’. This was to get an idea about the robustness and 
usefulness of the methods in practice [1]. Data from a fixed 
interval, 60s to 300s, was used to avoid electrical artefacts 
which commonly occur at the beginning of a record, therefore 
give a standard 4 minutes data to analyze.   

IV. RESULTS AND DISCUSSIONS 
The LZW algorithm and the Tsallis model were applied to 

datasets A and B to generate compression ratios and 
normalized entropies, respectively, for each subject. The 
channel numbered from 1 to 21 correspond respectively to 
montage  FP1, FP2, F7, F3, FZ, F4, F8, A1, T3, C3, CZ, C4, 
T4, A2, T5, P3, PZ, P4, T6, O1, O2. Fig. 1 shows plots of the 
compression ratios for each of the 21 channels and for each 
subject in dataset A using the LZW.  

A. LZW Ratio of Dataset A 

 
The sensitivity and specificity measures provide an 

indication of performance, but acceptable values for these 
depend on the application.  As a screening tool, a very high 
specificity is desirable as this would reduce the possibility of 
many patients being sent for unnecessary and resource 
consuming follow-up tests. To achieve 100% specificity in 
Dataset A, we can select a compression ratio of 69% as a 
threshold. In this case, compression ratios in the range 0~69% 
is indicative of AD and ratios of >69% is normal. For the 
Dataset A, this gives the sensitivity of 77.78%.  

   Fig. 2, Fig. 3 and Fig. 4 show, respectively, the average 
compression values across channels for each case, the 
average compression values for each channel and across 
subjects in each of the two subject groups, and the average 
compression values in key regions of the scalp across subjects 
in each of the two groups. These clearly show that the AD 
group has a lower LZW compression ratio than normal group, 
and that the two groups are well separated by examining the 
channels, as well as the regions (for example, the p-values in 
TABLE I). The sensitivity for all channels is 95.24% and 
83.33% for all regions.                                                                                          

   

 

 
B. Tsallis Entropy of Dataset A 
 We also carried out a similar study using normalized 

Tsallis Entropy (see Fig. 6, Fig. 7 & Fig. 8). In this case, a 
threshold of 0.22 is used to achieve 100% specificity, with a 
corresponding sensitivity of 80.95% (see Fig. 5). The 
sensitivity across channels is 85.71 % and 77.78% across 
regions.  

These also clearly show that the AD group has a lower LZW 
compression ratio than normal group, and that the two groups 
are well separated by examining the channels, as well as the 

 
Fig. 3.  The average and standard deviation of all cases in each channel 
(Dataset A). 

 
Fig. 2.  The average and standard deviation of all channels in each case 
(Dataset A).

TABLE  I 
P-VALUE FOR REGIONS USING LZW (DATASET A) 

 Region 
Control subjects 

(Mean ± SD) 
AD patients 
(Mean ± SD) p-value 

Frontal Pole 88.99% ± 0.0714  66.34% ± 0.1027  2.2597E-03 
Temporal 79.09% ± 0.0286  62.16% ± 0.0673  1.6519E-04 
Parietal  77.46% ± 0.0285  58.11% ± 0.0772  1.1664E-04 
Frontal  83.07% ± 0.0328  62.73% ± 0.0694  7.2100E-05 
Central 76.03% ± 0.0317  57.08% ± 0.0367  1.3363E-05 
Occipital  78.99% ± 0.0314  54.70% ± 0.0620  9.2036E-06 

 
Fig. 1.  LZW compression ratio for all cases in channels (Dataset A). 

 
Fig. 4.  The average and standard deviation of all cases for each region 
(Dataset A). 
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regions (for example, the p-values in TABLE II). 

 

 

 

 
C. LZW Ratio and Tsallis Entropy of Dataset B 

 

 

 

TABLE  II 
P-VALUES FOR REGIONS USING TSALLIS ENTROPY (DATASET 

A) 

Region 
Control subjects 
(Mean ± SD) 

AD patients 
(Mean  ± SD) p-value 

Central 0.3279  ± 0.0592  0.1604  ± 0.0080  1.0760E-03 
Frontal Pole 0.4488  ± 0.0637  0.2009  ± 0.0606  2.5544E-04 
Temporal 0.3484  ± 0.0428  0.1759  ± 0.0291  1.3272E-04 
Occipital 0.3591  ± 0.0489  0.1627  ± 0.0258  1.1562E-04 
Frontal  0.4561  ± 0.0398  0.2026  ± 0.0541  1.2013E-05 
Parietal  0.3440  ± 0.0351  0.1560  ± 0.0184  1.2007E-05 

 
Fig. 11.  The average and standard deviation of all cases for each region 
(Dataset B). 

 
Fig. 10.  The average and standard deviation of all cases in each 
channel (Dataset B). 

 
Fig. 9.  The average and standard deviation of all channels in each case 
(Dataset B). 

 
Fig. 5.  Tsallis entropy for all cases in channels (Dataset A). 

 
Fig. 6.  The average and standard deviation of all channels in each case 
(Dataset A). 

 
Fig.8.  The average and standard deviation of all cases for each region 
(Dataset A). 

 
Fig.7.  The average and standard deviation of all cases in each channel 
(Dataset A). 
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V. CONCLUSIONS 
The investigation reported in this paper suggests that 

information theoretic methods provide a potentially useful 
way for generating EEG markers for AD.  The results show 
that both measures (compression ratio and normalized Tsallis 
entropy) are lower in AD than for the normal group. 
However, for noisy data there may be a need to pre-process 
the data before the methods are applied.  

In future, we will investigate the impacts of the condition 
of the subject on the information theoretical markers (e.g. 
sleep, ERP experiments). 
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Fig. 14.  The average and standard deviation of all cases for each region  
(Dataset B). 

 
Fig. 13.  The average and standard deviation of all cases in each 
channel (Dataset B). 

 
Fig. 12.  The average and standard deviation of all channels in each 
case (Dataset B). 
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