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ABSTRACT 
 
The need to automate the interpretation of the EEG to provide a more efficient and reliable 
assessment is widely recognised. Techniques developed thus far however, neither 
adequately deal with the uncertainty in the knowledge, which is linguistic in nature, or deal 
with contamination of the EEG by artefacts. By developing models to interpret the EEG 
based on fuzzy logic, and integrating many years of research for the reliable processing of 
artefacts, this work aims to develop a reliable technique for the purpose of developing a 
decision support system for EEG staff to ensure accurate interpretation of the EEG. Results 
include an automatically generated factual report of an EEG which deals with uncertainty 
in manner akin to the human reasoning. The results also show a reduction in bias in the 
factual report introduced by artefact contamination. 
 
INTRODUCTION 
 
The electroencephalogram (EEG), the recording of electrical activity of the brain, is used 
in hospitals world-wide for the analysis and diagnosis of various normal and diseased 
states of the brain such as sleep, dementia and epilepsy. Typically it is recorded for 15 - 60 
minutes from 21 locations on the scalp. A report is then written describing the relevant 
features of the EEG, and finally an interpretation is made in the light of the clinical 
problem. The waveforms of interest in the EEG are often called activity and can be 
classified as either background or transient. Background activity is on-going and rhythmic 
and is usually classified by frequency into the bands: delta (0 - 4Hz), theta (4 - 8Hz), alpha 
(8 - 13Hz) and beta (> 13Hz). Transient activity is short duration and is usually described 
in terms of waveform such as spikewave or sharpwave. Figure 1 shows 4 seconds of EEG 
and the electrode positions from where each EEG channel was recorded. An alpha rhythm 
is clearly discernible, particularly at the back of the head. This rhythm is characteristic of 
the normal adult. 
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Figure 1. The normal EEG. 

 
Although some knowledge of the origin of EEG signals exists, much is still unknown. As a 
consequence, the interpretation of these signals is based partly on an empirical as well as 
physiological understanding, making EEG interpretation a subjective procedure requiring 
many years of experience. Further, to interpret the EEG, features such as frequency and 
amplitude need to be analysed both in time and spatially on the scalp. This makes EEG 
interpretation a difficult, time consuming and laborious task, especially when carried out 
on the routine 15 - 60 minute recording. Interpretations consequently differ between 
clinicians, leading to variable and sometimes erroneous assessments [Kiloh et al. 1981]. 
 
The need to automate the interpretation of the EEG to provide a more efficient and reliable 
assessment is widely recognised, but is complicated by 2 factors: the presence of artefacts 
which contaminate the EEG, making interpretation difficult, and the adequate capture of 
subjective expertise which is ill-suited to conventional methods of artificial intelligence. 
Techniques developed to interpret the EEG thus far [Nakamura et al. 1992, Jagannathan et 
al. 1982], neither adequately, if at all, deal with the uncertainty in the knowledge which is 
linguistic in nature, or deal with the contamination of the EEG by artefacts, which 
seriously biases or invalidates system results. Unlike certainty factors, fuzzy logic deals 
with uncertainty in a manner akin to human reasoning, that is linguistically (e.g. very 
normal, somewhat normal, extremely abnormal) rather than numerically (e.g. normal [0.7], 
normal [0.3], abnormal [1]). By developing models to interpret the EEG based on fuzzy 
logic, and integrating many years of research for the reliable processing of artefacts, this 
work aims to develop a reliable technique for the purpose of developing a decision support 
system for EEG staff to ensure accurate interpretation of the EEG and provide some relief 
to the clinical work load. 
 
DATA COLLECTION 
 
For the development of a reliable technique to interpret the EEG the collection of 
appropriate data in sufficient amounts is paramount. The data required is 21 channel EEG 
taken from awake Alzheimer’s disease patients and age-matched normal controls and for 
screening purposes, age, medical history, family medical history and a mental state 
assessment. For the initial study, a collection system and protocol was integrated into the 
hospital environment and 8 normal control volunteers and 3 Alzheimer’s EEGs were 
recorded.  
 
FEATURE EXTRACTION 
 



To characterise each activity in each channel in each 4 second segment, 6 basic time and 
frequency domain features were extracted. The features frequency, power, amount and 
frequency variability, were taken from the power spectral density (PSD), where frequency 
was the frequency of a PSD peak maximum, power was the area of a PSD peak, amount 
was the area of a PSD peak as a percentage of the whole PSD and frequency variability 
was the width of a PSD peak (Figure 2). The features amplitude and amplitude variability 
were taken from the time domain by isolating the activity in time using a digital filter 
whose passband was defined by the width of the PSD peak (Figure 3). Amplitude was 
defined as the maximum peak to peak swing and amplitude variability was defined as the 
mean standard deviation of the maxima and minima. To produce a value that was 
amplitude independent, the maxima and minima values were first divided by their mean 
value. 
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Figure 2. Frequency domain features using power 

spectral density estimation. 

 
 

-6.0E-5

-2.0E-5

2.0E-5

6.0E-5

0 1 2 3 s

V
PSD peak #1

-6.0E-5

-2.0E-5

2.0E-5

6.0E-5

0 1 2 3 s

V
PSD peak #2

variability
amplitude

Figure 3. Time domain features using frequency band filtering. 

 
DATA REDUCTION 
 
PSD peak detection is a highly sensitive method for identifying activity in the EEG, 
typically identifying around 100 activities in a 4 second epoch. Many of the activities 
however are of the same origin, in fact, the clinician rarely identifies more than 10 
activities in the entire EEG record. Because background activity is usually classified 
according to frequency, activities were clustered by frequency using the leader cluster 
algorithm. This procedure usually produces about 9 - 15 clusters, each corresponding to 
unique activities in the EEG.  
 



INTELLIGENT SIGNAL ANALYSIS 
 
Some of the features used to describe the EEG can and are expressed quantitatively. For 
example, amplitude is often measured by the clinician as the maximum peak-peak swing 
(in µV), and frequency is often measured by counting the number of peaks contained in a 1 
second window (in Hz). Other features such as the organisation of activity or the location 
of activity on the scalp cannot quantitatively be measured without additional computerised 
analysis. Instead, these features are measured by the clinician qualitatively using pattern 
analysis expertise obtained through training and experience. 
 
Table 1 shows 7 features used to describe each activity in the EEG. Also shown are the 
extracted features from which these features will be calculated. For the quantitative 
features: amplitude, frequency and symmetry, the extracted features can be used directly. 
For the qualitative features, location, organisation and change on eye opening, an 
intelligent technique is necessary to model the pattern analysis expertise of the clinician. 
 

Features Example Extracted features 
 

Frequency 10Hz mean cluster frequency 
Amplitude 50µV maximum cluster amplitude 
Amount symmetry 1 : 0.6 ratio of the cluster power in the left and right 

hemisphere 
Frequency symmetry 10Hz : 10.6Hz mean cluster frequencies in the left and right 

hemisphere 
Location right anterior distribution of cluster power across the scalp 

normalised to 1 
Organisation irregular mean cluster frequency variability and mean cluster 

amplitude variability 
Change on eye opening attenuates difference between eyes closed cluster power and 

corresponding eyes open cluster power 
 

Table 1. Features used to describe activity in the EEG. 

 
FUZZY SYSTEM DEVELOPMENT 
 
The development of a fuzzy system to model imprecise expertise is typically carried out in 
4 stages: 
• define rules 
• define fuzzy relations to model each rule and fact 
• perform compositional rule of inference to calculate the deduction 
• utilise deduction e.g. for a crisp output perform defuzzification, for a linguistic output 

perform linguistic approximation or for forward chaining assert the deduction as a new 
fact 

 
To model the pattern analysis expertise to extract the features organisation and change on 
eye opening, fuzzy models were developed using the stages described above. For a detailed 
example of performing these stages see [Riddington et al. 1996]. 
 
Organisation 
 
Organisation is an important feature, particularly when assessing the dominant rhythm in 
the EEG. Defined as the degree to which an activity conforms to certain ideal 
characteristics [Chatrian et al. 1974], and measured in this case as variability in amplitude 



and frequency. The relationship between the organisation of an activity and the features 
frequency variability and amplitude variability is described by the rules in Table 2. Each 
fuzzy proposition were defined using s, z or pi shaped fuzzy sets. From these, rule models 
were constructed using the Mamdani implication and the deduction calculated using the 
compositional rule of inference. Finally a linguistic approximation to the deduction was 
calculated using primary sets regular, moderate and irregular and hedges extremely, very, 
somewhat, and more or less. Each hedge performed a power operation of 3, 2, 0.5 and 
0.333 on the primary sets respectively. 
 

  
IF frequency variability is 
organised 

IF frequency variability is 
organised 

AND amplitude variability is 
organised 

AND amplitude variability is 
disorganised 

THEN organisation is regular THEN organisation is moderate 
IF frequency variability is 
disorganised 

IF frequency variability is 
disorganised 

AND amplitude variability is 
organised 

AND amplitude variability is 
disorganised 

THEN organisation is moderate THEN organisation is irregular 
 

Table 2. Knowledge-base modelling expertise to calculate the feature organisation. 

 
 
Reactivity To Eye Opening 
 
Another important feature for assessing the dominant rhythm in the EEG is its reactivity to 
eye opening. For example, in dementia, the lack of alpha rhythm reactivity can be a highly 
sensitive diagnostic sign [Visser 1991]. To calculate the change of an activity between 
eyes open and eyes closed states, clusters needed to be identified in each state which 
corresponded to the same activity. This was carried out using a measure of similarity. The 
difference between the average power in each cluster pair was then used to give the change 
on eye opening. Similarity between eyes closed and eyes open clusters was measured using 
frequency (mean cluster frequency) and location (distribution of power across the scalp 
normalised to 1) by the rules shown in Table 3. Defuzzification of the deduction from 
these rules provided a numerical measure for similarity. Eyes open / eyes closed cluster 
pairs having the maximum measure of similarity were thus selected as clusters 
corresponded to the same activity. Change on eye opening was calculated using cluster 
average power using the rules in Table 4. Finally, a linguistic approximation to the 
deduction was calculated using primary sets attenuates, does not change and increases and 
hedges extremely, very, somewhat, and more or less. 
 

 
IF eyes open frequency equals eyes closed frequency 
AND eyes open location equals eyes closed location 
THEN similarity is high 
IF eyes open frequency does not equal eyes closed frequency 
AND eyes open location equals eyes closed location 
THEN similarity is moderate 
IF eyes open frequency equals eyes closed frequency 
AND eyes open location does not equal eyes closed location 
THEN similarity is moderate 
IF eyes open frequency does not equal eyes closed frequency 
AND eyes open location does not equal eyes closed location 
THEN similarity is low 
 

Table 3. Knowledge-base modelling expertise to measure similarity between eyes 
open and closed activity. 



 

 
 
IF difference between eyes closed and eyes open power as a 
percentage is positive 
THEN activity attenuates on eye opening 
IF difference between eyes closed and eyes open power as a 
percentage is zero 
THEN activity does not change on eye opening 
IF difference between eyes closed and eyes open power as a 
percentage is negative 
THEN activity increases on eye opening 
 

Table 4. Knowledge-base modelling expertise to calculate the feature reactivity to 
eye opening. 

 
Location 
 
The calculation of location of activity on the scalp was based on the distribution across the 
channels of power in a cluster. Normalising the distribution to 1 provides the membership 
values of the location of the clusters for each channel. Linguistic approximation was then 
calculated using primary fuzzy sets posterior, anterior, frontal, central, post-central, 
parietal, occipital, left-temporal, right-temporal, temporal, right-laterally, left-laterally 
and diffuse and hedges left, right, more-on-the-left and more-on-the-right.  
 
ARTEFACT PROCESSING 
 
An important issue in visual EEG examination is the effect of artefacts, which are mostly 
non-cerebral activities. Artefacts can seriously affect the interpretation of EEG since they 
could have similar waveforms as genuine activities. The importance of artefact processing 
to automated EEG is widely recognized to ensure that the interpretation takes place in the 
proper context. 
  
In general, artefact processing includes two major steps: artefact identification and artefact 
removal/rejection. The former detects the existence of artefacts in EEG and identifies their 
types. The latter removes the contamination caused by artefacts from EEG signals with 
minimal distortion of important clinical information or rejects the signal if no appropriate 
removal procedure can be found. 
 
In this paper, we use an artefact processing system based on neural networks (NN) and 
expert system, whose structure is shown in Figure 4. Time and frequency domain features 
are extracted from EEG. The phase I identification involves classifier design using 
multilayer feedforward networks. The networks are trained using the data selected by 
medical experts. The phase II identification employs the expert knowledge to analyse the 
outputs from the NN classifiers to further increase the successful rate of classification. The 
detailed description of feature extraction and classifier design can be found in [Wu et al. 
1994].  
 
The output of the artefact processing system is a table which labels each channel of EEG 
with the artefact type or as artefact-free. 
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Figure 4. Artefact processing system. 

 
These labels can then be used to exclude from the clustering procedure the PSD peaks 
suspected of artefact contamination (Figure 5). 
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Figure 5. System for intelligent enhancement and interpretation. 

 
 
RESULTS 
 
Quantitative features calculated during feature extraction and qualitative features 
calculated during intelligent signal analysis, when combined, produce a description which 
efficiently characterises the entire EEG. Table 5 shows the generated description produced 
from the EEG of volunteer #2. Significant activities and artefacts for volunteer #2 are a 
regular dominant alpha rhythm, located in the posterior region, 10Hz, 50µV, which is 
symmetrical and attenuates on eye opening; beta activity, located diffusely, 20Hz, up to 
20µV, which is symmetrical; muscle, located in the frontal region, approx 22Hz upwards, 
50µV, which reduces on eye opening; muscle, located temporal regions - more on the left, 
approx 20Hz upwards, 30-50µV, which does not change on eye opening and small eye 
movements, up to 40µV, which increases considerably on eye opening. 
 
The canonogram, the display of the distribution of power for each cluster, verifies the 
effectiveness of the linguistic approximation technique for describing activity location. 
Cluster #6 describes the alpha rhythm well. The large and artefact prone frequency range 
of beta activity (> 13Hz) has resulted in the sharing of beta activity between clusters #1, #3 
and #4. All other clusters are probably artefact. Only PSD peaks ≤ 4Hz were removed by 
the system when eye movement or blinks were identified. As a consequence cluster #7 
which is > 4Hz have not been removed. Cluster #2 is very low power and is probably 
insignificant. Cluster #5 represents eye movements not identified by the artefact processor. 
 
  



Computer generated factual report 
 

# Description Amount 
symmetry 

 

Frequency 
symmetry 

Canonogram 

1 somewhat-regular beta-activity, 
19Hz, 18µV, located-post-central-
more-on-the-left, attenuates-on-
eye-opening 

0.9 : 1 18.9 : 19 

2 moderately-organised beta-
activity, 25.1Hz, 8.8µV, located-
diffuse-more-on-the-right, 
attenuates-on-eye-opening 

0.9 : 1 25 : 25 

3 somewhat-moderately-organised 
beta-activity, 22.2Hz, 12µV, 
located-central, attenuates-on-
eye-opening 

1 : 0.9 22.3 : 22.2 

4 regular beta-activity, 15.1Hz, 
19µV, located-posterior-more-on-
the-right, attenuates-on-eye-
opening 

0.6 : 1 15.2 : 15.2 

5 somewhat-regular delta-activity, 
1.8Hz, 20µV, located-frontal-
more-on-the-right, increases-on-
eye-opening 

1 : 1 1.6 : 1.9 

6 more-or-less-regular dominant-
alpha-rhythm, 9.8Hz, 44µV, 
located-posterior-more-on-the-
right, attenuates-on-eye-opening 

0.9 : 1 4.5 : 5.1 

7 regular delta-theta-activity, 
4.8Hz, 23µV, located-frontal-
more-on-the-right, increases-on-
eye-opening 

0.9 : 1 4.5 : 5.1 

Table 5. Factual description of the EEG for volunteer #2. 

 

 
The effects of artefact processing on the interpretation are shown in Table 6. Prior to 
artefact processing, muscle activity found in the frontal, and left temporal regions have 
biased many of the features of the beta activity. Artefact processing removes PSD peaks 
suspected of muscle, blink or eye movement corruption and has thus removed some of the 
bias in the results. 

 



Description Amount 
symmetry 

 

Frequency 
symmetry 

Canonogram 

Without artefact processing 
 
somewhat-regular beta-activity, 20Hz, 
24µV, located-diffusely-more-on-the-
left, attenuates-on-eye-opening 

1 : 0.9 19.9 : 19.9 

With artefact processing 
 
somewhat-regular beta-activity, 19Hz, 
18µV, located-posterior-central-more-
on-the-left, attenuates-on-eye-opening 

0.9 : 1 18.9 : 19 

 

Table 6. Effects of artefact processing. 

 
CONCLUSIONS 
 
Salient features of the EEG are both quantitative and qualitative. Quantitative examples are 
amplitude where the clinician measures the parameter using a ruler, or frequency, where 
peaks in a 1 second segment are counted. Qualitative examples include organisation where 
the amplitude and frequency of a rhythm are assessed with regard to uniformity and 
descriptions such as regular or irregular are subjectively applied. Similar situations exist 
for location, change on eye opening and overall abnormality. 
 
Fuzzy sets enable such descriptions to be formally represented by allowing objects such as 
frequency variation measurements to be members to subjective terms such as organised or 
disorganised to a degree. Inference in formal systems have long been based on truth. How 
does one however represent the truth of the proposition the rhythm is organised if 
organised is ill-defined? Fuzzy logic represents the truth of such propositions with equally 
ill-defined measures of truth such as somewhat true. Reasoning with fuzzy logic modifies 
the conclusion of a rule given the truth of the rule antecedent by increasing the vagueness 
for decreasing truth. A procedure called linguistic approximation then identifies the 
changes made in the conclusion and applies hedges such as the rhythm is very irregular or 
the rhythm is somewhat regular to represent these changes. 
 
The qualitative nature of EEG interpretation was represented using these techniques to 
provide a factual report of the EEG which accurately describes the qualitative features 
such as organisation and location of activity e.g. descriptions such as organisation is very 
irregular, location is posterior - more on the left. This is in stark difference with existing 
published techniques to interpret the EEG which portray uncertainty to the clinician 
numerically, and being incompatible to the clinician, require experience to understand and 
interpret. 
 
To take into account the effects of artefacts, the system omits from the clustering 
procedure, frequency peaks which are suspected of having artefact origin by incorporating 
work from [Wu et al. 1994]. Rather than omitting the PSD peak, further work will correct 
the effects of artefacts in a PSD peak, particularly if it contains information of cerebral 
origin by incorporating work from [Ifeachor et al. 1990]. 
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