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Abstract Receiver operating characteristic 
(ROC) curves are commonly used to quantify 
the performance of intelligent medical 
systems. Because of the time and expense in 
collecting test cases it is beneficial if robust 
ROC curve analysis can be applied to small 
numbers of test cases. Using the Bayesian, 
rather than the Frequentist, approach gives 
considerable advantages in robustness and 
understanding. This paper compares the 
Frequentist and Bayesian approaches to 
nonparametric ROC analysis, and introduces a 
robust Bayesian method for parametric ROC 
analysis. 
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1 Introduction  

We present an overview of a research project 
to investigate the use of Bayesian statistics for 
ROC curves analysis for intelligent medical 
system evaluation. The project showed that 
Bayesian statistics are particularly useful when 
the sample size is small, which is a problem 
commonly encountered in evaluating 
intelligent medical systems. Ideally the more 
cases used to test an intelligent medical system 
the better, but the practicalities of the time and 
cost of collecting each test case, and of 
defining a Gold standard often limits numbers. 
Using small numbers of test cases limits the 
statistical certainty of the conclusions that can 
be drawn from any analysis. Confidence 
intervals should always be used, regardless of 
sample size, but the lower the sample size the 
more dominant they become in correct 
interpretation of the results. Existing ROC 
analysis commonly takes a Frequentist, or 
classical, approach to ROC curve analysis that 
does not perform well with small sample sizes. 
The confidence intervals produced are at best 
misleading and at worst wrong. It is therefore 
suggested that those evaluating intelligent 

medical systems should consider the 
advantages of switching to Bayesian statistics. 

2 The ROC Curve Example  

Table 1 gives the data for a hypothetical 
intelligent medical system evaluation. The 
columns give the Gold standard diagnosis, the 
rows the tested system’s opinion, right or 
wrong. Figure 1 shows the ROC curve plotted 
from this data.  

  Gold Standard 
  Diseased Healthy
 ‘Diseased’ b0 = 4 a0 = 0 
Test ‘Unknown’ b1 = 1 a1 = 3 
 ‘Healthy’ b2 = 0 a2 = 7 

        Table 1 
The Hit Rates and False Alarm Rates are given 
by the following ratios, generated by moving a 
threshold down the table. Point 0 is for the 
‘Diseased’ category alone, point 1 for 
‘Diseased’ plus ‘Unknown’. 
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Plotting the ‘curve’ as straight-line segments is 
the nonparametric approach. Section 6 
illustrates the parametric approach where a 
smooth curve is fitted to the data.  Application 
of the methods to real data can be found in [1] 
and [2].  

3 Frequentist Confidence Intervals  

Figure 1 is deceptive in the apparent certainty 
of the points given the small number of test 
cases. Confidence intervals should be added. 
Figure 2 shows confidence intervals (CIs) as 
calculated using a well-known Frequentist 
method [3] given by Equations 1 and 2 below: 

 (1- )
-1

HitRate HitRate
DiseasedCases

σ =                        (1) 

 (1- ) (2)
-1

FalseAlarmRate FalseAlarmRate
HealthyCases

σ =   

Where σ is the standard deviation (Sd). The 
95% CI is 1.96 × σ, assuming a Gaussian 
distribution. 

The False Alarm Rate CI of point 0, and the 
Hit Rate CI of point 1 have zero width. This 
implies that this False Alarm Rate and this Hit 
Rate are known with certainty. Given the 
number of cases, this defies common sense.  

Four observations can be made. Firstly, this 
statistical test is not recommended for such a 
low sample size. Secondly, this test is not 
recommended when the Hit Rate (or False 
Alarm Rate) is close to 0 or 1. Thirdly, even if 
the recommendations above are ignored, the 
zero width confidence intervals are absolutely 
correct within the Frequentist statistical 
paradigm. The Frequentist paradigm makes an 
estimate of the Hit Rate of the population by 
assuming it is the same as the Hit Rate of the 
sample. For point 1, 5 out of 5 diseased cases 
are categorised as either ‘Diseased’ or 
‘Unknown’, which means Hit Rate1 is 1.0. 
This is now assumed to be the Hit Rate of the 
population. The confidence interval can now 
be calculated by seeing how a hypothetical 
infinite number of samples drawn from this 
population would be distributed. If the 
population Hit Rate really was exactly 1.0, 
then a0 really would be zero for every sample 

that was drawn. The confidence interval really 
would have zero width. 
 

The fourth point is that one of the confidence 
intervals is outside the ROC graph, which is 
obviously nonsense. In this case it would be 
wise to concur with points one and two and 
not use this method at all! However, 
sometimes the Frequentist confidence interval 
is defined as a region that will contain at least 
95% of further hypothetical samples, therefore 
including areas that cannot possible contain a 
sample is within the definition. Such 
obfuscation has nothing to commend it. 

4 The Bayesian Approach  

The Bayesian approach gives a more 
satisfactory answer. The approach does not 
estimate the population point with such 
absolute certainly, but instead uses a 
probability density function (pdf) of its 
location. This is called the Bayesian prior. The 
sample is then used as evidence to update this 
probabilistic view of the population point’s 
location using Bayes' law. The simplest 
distribution to use for the population point is 
the uniform probability distribution as given 
by Equation 3 and plotted in Figure 3.  

0 0p(x) x  (1- x)∝              (3) 

In the case of the False Alarm Rate for point 0, 
the posterior distribution, or likelihood 
function, is then give by [2]: 
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Where is the False Alarm Rate; Far ( )p Far is 
the probability of the False Alarm Rate; 

0 1 2( , | ) p a a a Far+ is the probability of 
obtaining the data a0, a1, a2 for a given value of 
Far; 0 1 2( | , )p Far a a a+ is the posterior 
probability, the probability of a given value of 
Far conditional on the data a0, a1, a2. 

(NB: the denominator gives the probability of 
obtaining the data a0, a1, a2 independent of Far 
by integrating out Far)

 
This Bayesian posterior distribution for the 
False Alarm Rate of point 0 is calculated using 
Equation 4 and the resultant Bayesian 
posterior distribution plotted in Figure 4. 

 
In place of a 95% confidence interval the 95% 
Bayesian posterior interval is used; it is shown 
as a vertical line. This method can be applied 
to the Hit Rate as well, and the pdfs combined. 

Figure 5 shows the method applied in both 
dimensions for both points of the original 
ROC curve in Figure 1. The 95% posterior 
intervals have been shown as contours around 
the posterior pdf. This gives a result more in 
tune with intuitive understanding of the 

statistical uncertainties of using such a small 
sample size.  

 
However, it is still dependent on an 
assumption. The assumption is that the 
Bayesian prior is uniform, i.e before we saw 
the evidence we believed that every population 
False Alarm Rate was equally likely (Equation 
3, Figure 3). Alternatively, the ‘uninformative’ 
Bayesian prior (Equation 5) is a possible 
candidate. 

1 1( )  (1- )p x x x− −∝              (5) 

This has some appealing mathematical 
properties [2], but it cannot be plotted as it 
evaluates to infinity when x is 0 or 1, however, 
Figure 6 plots the function excluding these two 
end values.  In the case of the data in Table 1, 
the infinity will also appear in the posterior 
distribution, and so an uninformative prior is 
unhelpful in these circumstances. 

 
It should be noted that while the Bayesian and 
Frequentist paradigms are radically different 
with small sample sizes, the results 
asymptotically approach each other as the 
sample size rises. This is also true for different 
Bayesian priors. Suppose that a0=80 and 
a1+a2=120. This gives a Frequentist population 
False Alarm Rate estimate of 0.4. The central 
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limit theorem predicts that the distribution of 
repeated samples of 200 cases will 
approximate a Gaussian distribution. Equation 
1 can be used to generate the standard 
deviation of this distribution. All three 
distributions, the Frequentist, the Bayesian 
with a uniform prior, and the Bayesian with an 
uninformative prior, can now be compared by 
plotting them on the same graph as shown in 
Figure 7.  

 
At the resolution of Figure 7 all three 
distributions appear identical. Though 
Bayesian statistics and Frequentist statistics 
are completely different paradigms, this 
convergence as sample size rises is reassuring. 
However, it is our opinion that the Bayesian 
paradigm has significant advantages in 
common sense interpretation when the sample 
size is small as demonstrated above. 

The example in Figure 5 of the 2-D 95% 
Bayesian posterior interval was calculated by 
Dirichlet integrals of a family of equations 
starting with Equation 4. Full details can be 
found in [1]. The Dirichlet integrals give an 
analytic answer from which the graphs were 
produced directly [1].  The Bayesian approach 
can also be used for other aspects of ROC 
analysis, but here the posterior distributions 
must be approximated using a numerical 
approach. 

 
5 Bayesian Nonparametric AUC  

ROC curves are often quantified by using the 
Area Under the Curve (AUC) as a summary 
statistic. The AUC gives the probability that a 
system can correctly diagnose the diseased 
case when presented with a random pair of one 

diseased case and one healthy case [3]. 
Because this scenario is unlikely in any 
practical situation it may make more sense to 
restate the AUC as the probability of correctly 
diagnosing each case when presented with 
every possible pair of one healthy and one 
diseased case from the sample. 

Much as it would be desirable to generate the 
Bayesian posterior distribution for the AUC 
analytically, our conjecture is that the 
integration would require a calculation running 
in time proportional to 3p, (where p is the 
number of points). If the ROC graph is 
quantized into a grid of G×G cells, with the 
curve approximated by a series of lines joining 
these cells, the pdf of the AUC can be 
estimated by an algorithm running in time 
proportional to G5 and using memory 
proportional to G3 [1]. 

Figure 8 shows the Bayesian posterior 
distribution of the AUC of the ROC curve in 
Figure 1 calculated by this method. In contrast, 
the Frequentist method calculates the 
population AUC as equal to the sample AUC 
of 0.97. The standard deviation can then be 
calculated using DeLong et al.’s method [4]. 
This gives a value of 0.0337. Given that 
Hoeffding [5] proved the distribution is 
asymptotically Gaussian the 95% confidence 
interval is therefore ±0.066. This is shown in 
Figure 9. 

 
The result shown in Figure 9 is not only 
radically different from the Bayesian answer it 
is also obviously nonsense – the upper bound 
of the 95% confidence interval (1.036) 
exceeds the maximum possible value of the 
AUC (1.0)! 



- 5 - 

 

 
 

6 Bayesian Parametric ROC  

The ROC curve in Figure 1 makes rather 
literal interpretation of the data points. 
However, by assuming an underlying 
parametric model a curve can be fitted. A 
common model is to assume that the diseased 
and healthy populations from which the 
sample is drawn are Gaussian, resulting in a 
bi-normal ROC curve1. 

The most sophisticated current method of 
producing a parametric ROC curve is to use a 
maximum likelihood calculation to find the 
population curve with the highest probability 
of generating the sample points [6]. This is 
actually a Bayesian method, but the 
confidence interval is then calculated 
assuming the sample distribution is Gaussian. 
As illustrated by Figure 7, this is correct for 
large sample sizes, but is inaccurate for a small 
sample sizes. However, the biggest flaw of the 
method is that it is not robust. So called 
‘degenerate cases’, which include the example 
used here, fail to converge in existing 
maximum likelihood algorithms. Degenerate 
cases are commoner the smaller the sample 
size and the larger the AUC. 

A robust algorithm has been developed that 
can cope with ‘degenerate cases’ and can also 
plot the Bayesian posterior interval for the 
sample [1]. The algorithm quantizes the ROC 

                                                 
1 Since monotonic transformations of the underlying 
data do not affect the shape of the resulting ROC curve, 
it can be more rigorously stated that the underlying 
distributions have to be latently Gaussian to give a bi-
normal ROC curve. 

graph into a G×G grid and runs in time 
proportional to G3, but takes memory 
proportional to G4. This memory requirement 
means that the grid size is only 128×128 in the 
figures so the graininess is visible. Figure 10 
shows the maximum likelihood bi-normal 
ROC curve (to the limits of the underlying 
grid resolution) of the ‘degenerate’ data given 
in Table 1. 

 
In existing bi-normal parametric ROC analysis 
ROC curves are quantified by two parameters, 
α and β, which are the normalised difference 
of mean and the ratio of the standard 
deviations of the underlying healthy and 
diseased Gaussian distributions from which 
the ROC curve is derived. A point on a 2-D 
plot of α and β will therefore uniquely specify 
a ROC curve. 

The 95% posterior interval for a bi-normal 
ROC curve could therefore be illustrated on an 
(α, β) graph except for the fact that α has a 
range of ±∞, and β a range of 0 to +∞. In order 
to plot this graph new parameters were 
defined: 

2 h

d h

Healthy σσ
σ σ

=
+

     2 d

d h

Disease σσ
σ σ

=
+

 

 
2

h dDisease Healthyµ σ µ σµ × − ×
∆ =  

Where σh is the absolute standard deviation of 
the healthy population; σd is the absolute 
standard deviation of the diseased population; 
µh is the absolute mean of the healthy 
population; µd is the absolute mean of the 
disease population. 
The pair Healthy σ and Disease σ are now in 
the range 0 to 2, but ∆µ is in the range ±∞. A 
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sigmoid function was therefore used to give a 
range of ±1: 

1  
1

Healthy Mean Disease Mean
e µ∆− =

+
 

Figure 11 shows a plot of the 95% posterior 
interval of Healthy Mean – Disease Mean and 
Healthy σ, (or Disease σ) of the healthy and 
diseased populations. 

This algorithm can also be used to generate the 
posterior interval of the parametric AUC. It is 
shown here in Figure 12. 

It is very similar to the distribution of the 
nonparametric AUC shown in Figure 8; the 
95% interval is similar in width, but the peak 
AUC is slightly larger. This should be 
expected as the convex curve of a parametric 
ROC curve encloses a greater area than the 
straight lines of a nonparametric curve of the 
same data. 

Existing methods fail to produce any ROC 
curve for this data, as it is ‘degenerate’. 

 
7 Conclusion  

A brief overview of novel methods for 
Bayesian analysis of ROC curves is presented. 
Full details can be found in [1]. Methods for 

both nonparametric and parametric ROC 
curves that are robust and accurate for all 
sample sizes are described. In contrast existing 
methods give results that can be 
counterintuitive, obfuscated, or wrong, or do 
not produce any results at all. Bayesian 
methods are robust and accurate at small 
samples, and produce the same answers as 
Frequentist methods when the sample size is 
large. All the algorithms presented here have 
been tested by extensive Monte Carlo 
simulations. However, they still have 
disadvantages. Bayesian analysis requires a 
prior distribution, and some of the methods 
presented require considerable computer 
resources. However, the robustness, 
particularly at low sample sizes, make 
Bayesian methods a valuable contribution to 
the evaluation of intelligent medical systems 
where sample size is limited by the time and 
expense involved in collecting test cases. 
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