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Abstract— In this paper, we present an extension of sequential
non-uniform procedure (SNuP) with application of the method
to ovarian tumour data, obtained during multicentre study
by the International Ovarian Tumour Analysis Group (IOTA).
The inference method combines feature selection based on the
Kullback information gain and a step-wise classification proce-
dure to produce a reliable, interpretable and robust model. In
particular, we extend SNuP to enable it to handle continuous
variables without the need for manual specification of thresholds.
We applied the extended model to an ovarian tumour data
set to distinguish between malignant and benign tumours. The
performance of the model was assessed using ROC analysis and
gave 86.9% of sensitivity and 84.3% of specificity with overall
accuracy level of 84.9%.

I. INTRODUCTION

Ovarian tumours are common among women. In Europe

and North America the age-adjusted standardised incidence

rate of ovarian cancer is over 10 per 100,000 women [1].

Preoperative prediction of malignancy of ovarian tumours is

very important, because it can prevent unnecessary surgery

for benign functional cysts or in the case of benign neoplastic

lesions only minimal surgical intervention would be required.

On the other hand, patients with malignant forms of tumour

require not only surgical operation but also an appropriate pre-,

peri- and postoperative management. A great deal of effort has

been put in by gynecological oncologists in order to develop

preoperative predictive markers of ovarian malignancy. How-

ever, prospective testing of these markers have shown either

low performance or unbalanced results (i.e. high specificity

and low sensitivity). To address the limitations of previous

studies the International Ovarian Tumour Analysis (IOTA)

Group have established multicentre prospective clinical trial

with more than six centres working to the same protocol [2]

and collecting data from a total of 1000 patients who have a

persistent adnexal mass.

For clinical acceptance, a predictive model for discrimina-

tion of ovarian tumours should satisfy the following require-

ments:

(i) have reasonably high sensitivity and specificity levels,

typically 90% and 75%, respectively [3],

(ii) be interpretable, and

(iii) use as few diagnostic techniques/parameters as possible.

In relation to (iii), the range of laboratory and instrumental

diagnostic techniques for ovarian cancer is wide and includes

transvaginal and transabdominal ultrasonography, serum tu-

mour markers, laparoscopy, computer tomography and mag-

netic resonance imaging. A key problem is in the choice

of necessary procedures taking into account their diagnostic

value, cost and invasiveness.

In [4] we described a method of modelling the preoperative

diagnosis of ovarian tumours based on the Sequential Non-

uniform Procedure (SNuP), which meets the requirements

above. SNuP is based on the Naı̈ve Bayes classification, but

with additional restrictions. In particular, consecutive multi-

plication of likelihood ratios of input variables is interrupted

when one of the diagnostic thresholds [5] is reached. Values

of thresholds are specified according to an acceptable level of

the diagnostic errors.

The SNuP operates sequentially on the variables (features)

as the cases (observations) are accumulated. This is important

because it makes it possible to personalise differential diag-

nosis. This is achieved by varying the number of attributes

used, ranking the variables according to their discriminative

relevance and the specified confidence level.

The current SNuP does not handle continuous variables and

requires manual specification of thresholds for this type of

input features. This paper presents an approach to overcome

this problem by univariate and multivariate clustering of

continuous variables and the application of the modified SNuP

to IOTA phase I data set (see later).

The remainder of the paper is organised as follows. In

Section II, the data and method are presented. In Section

III, results of analysis are given followed by a performance

evaluation. Finally, we present the conclusion and future work.

II. METHODS AND PATIENTS

A. Methods of analysis

The key issue in preoperative diagnosis is to determine

whether a given patient belongs to one of two groups: benign

or malignant tumour, given the symptoms and laboratory data.

The task can be viewed as a two-class classification (Ak, where

k = 1, 2) problem, given a vector of input variables, x.

Let us denote P (Ak) - prior probability of class k, k =
1 . . . n and n is number of classes (groups), P (xi|Ak) -

conditional probability of xi given Ak, i.e. probability of

presence of symptom xi in the group Ak, P (xi) - prior

probability of symptom xi. So the posterior probability of

the patient to belong to group Ak having symptom xi can

be defined using Bayes’ theorem:
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P (Ak|xi) =
P (Ak)P (xi|Ak)∑

k

P (Ak)P (xi|Ak)
(1)

Sequential non-uniform procedure produces a model of

classification into two groups. The ratio of conditional prob-

abilities of the groups is equal to the ratio of symptom’s

occurrences in the two groups.

P (A1|xi)

P (A2|xi)
=

P (xi|A1)

P (xi|A2)
(2)

where
P (A1|xi)
P (A2|xi)

is a likelihood ratio of probability of a

group given symptom xi,
P (xi|A1)
P (xi|A2)

is a likelihood ratio of the

probability of the symptom xi given groups Ak.

Accumulation of the diagnostic information given the pres-

ence of independent features/symptoms x1, x2, ..., xn is per-

formed as

P (A1|x1, x2, ..., xn)

P (A2|x1, x2, ..., xn)
=

n∏

i=1

P (xi|A1)

P (xi|A2)
(3)

The inference process uses two types of errors to determine

the thresholds for the ratio in (3) to make a decision - α and β.

In terms of ‘malignant-benign’ classification, α specifies the

probability of false assignment of a patient with malignant

tumour into a benign tumour group, and β specifies the

probability of false assignment of a patient with benign tumour

to a malignant tumour group. In terms of classification into

groups A1 and A2, α is the rate of misclassification in group

A1, β is the rate of misclassification in group A2.

A diagnostic coefficient DCi of symptom xi is a score value

which is defined as

DCi = 10 log10

P (xi|A1)

P (xi|A2)
(4)

Accumulation of the diagnostic information using the diag-

nostic coefficients is performed as a sum:
∑

DC(xi) = DC(x1) + DC(x2) + ... + DC(xn) (5)

The threshold for a diagnostic hypothesis is the minimum

acceptable rate of correct diagnoses over incorrect ones.

Thresholds for the sum of the diagnostic coefficients are

defined as

DCth(A1) = 10 log10

1 − α

β
(6)

DCth(A2) = 10 log10

α

1 − β
(7)

where α and β are acceptable levels of diagnostic errors for

group A1 and A2 respectively.

The SNuP using diagnostic coefficients is performed until

the following inequality is true. When the inequality is broken

the diagnostic decision is made.

DCth(A2) <
∑

i

DC(xi) < DCth(A1) (8)

The feature selection process and ranking of input vari-

ables/symptoms is based on the calculation of symmetrised

Kullback-Leibler divergence between two distributions, P and

Q, so-called J-divergence [6]. The J-divergence of the distinct

value of the variable is defined as

J(xij) =
P (xij |A1) − P (xij |A2)

2
10 log10

P (xij |A1)

P (xij |A2)
(9)

The J-divergence of the variable is the sum of the infor-

mation measures of all its distinct values:

J(xi) =
m∑

j=1

J(xij) (10)

In order to obtain the most informative features the informa-

tion measures were calculated for all variables and then sorted

in a descending order according to the J-value.

Continuous variables were transformed to ordinal by parti-

tioning the initial input space. Thereafter these variables were

analysed by SNuP in the regular way. Automatic partition of

the input space for continuous variables was performed by

applying k-means clustering [7] with three number of clusters.

We used squared Euclidean distance as a distance measure,

initial centroid positions of clusters were selected randomly.

In case of a cluster losing all of its member observations those

clusters were removed. Assignment of continuous variables

from the test set to clusters was made on a basis of minimal

squared Euclidean distance to one of the centroids that were

identified on the training stage.

An algorithm for building the decision rule for differential

diagnosis involves the following steps:

1) calculate values of diagnostic coefficients DCi for all

symptoms xi using (4).

2) calculate J-divergence for all xi using (10) and sort

values in a descending order.

3) specify an acceptable level of errors, α and β, and

calculate the thresholds for diagnostic coefficients from

(6) and (7).

4) start the process of accumulation of diagnostic informa-

tion according to (5).

5) end the process when the inequality (8) is broken or

there are no variables left.

The performance of the model was assessed by calculating

the parameters of receiver operating characteristics: overall

accuracy (Acc), sensitivity (Se), specificity (Sp), predictive

positive value (PPV), predictive negative value (PNV). Eval-

uation of the model was performed by applying a 3-fold

cross validation. The initial data set was split randomly into

a training set and a test set with the proportion of malignant

to benign cases equal to 1:3. The results were summarised as

mean and standard deviation for Acc, Se, Sp, PPV, and PNV.

B. Patients

The IOTA I data set was collected in multicentre prospective

clinical study with a common protocol [2]. Full database

include 1066 cases of ovarian tumours, 266 malignant and

800 benign. Histological diagnosis were used as a gold stan-

dard. There were three data modalities: (i) clinical variables

included family history of ovarian and breast cancer, age,
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menopausal status, previous hormonal surgery, and surgical

history; (ii) sonographical examination was performed in all

cases with gray scale and colour Doppler imaging with total

over 40 morphological and blood flow velocity characteristics;

(iii) serum tumour marker CA125 was measured for 809

patients. When intratumoral blood flow velocity waveforms

were not detected, the peak systolic velocity (PSV), time

averaged maximum velocity (TAMXV), the pulsatility index

(PI), and the resistance index (RI) were substituted by 2.0

cm/sec, 1cm/sec, 3.0, and 1.0, respectively [3]. Descriptive

statistics and univariate analysis of ultrasound characteristics

are given in a previous publications on analysis of IOTA phase

I study [3], [8].

III. RESULTS

A. Transformation of data

At the first stage of analysis some preprocessing procedures

were made in order to incorporate continuous variables into a

model. Continuous variables were transformed into discrete

by automatical partitioning input space into intervals. We

used univariate and multivariate k-means clustering procedure

in MATLAB for that. For volumetric characteristics such

as diameter of the lesion (LesD1-3) was used multivariate

clustering. Table below demonstrates this approach. Firstly,

one has to specify variables and desired number of clusters.

We used three number of clusters by default, considering that

values in these clusters might be described as low, medium

and high. As a result, one obtain new variable with three/two

values. Assignment of values for the variable was made by

this rule

value = argi min
m∑

j=1

(xj − ci,j)
2 (11)

where
m∑

j=1

(xj − ci,j)
2 is Euclidean distance from an obser-

vation x to one of m-dimensional centroids c of clusters. So

in the case of malignant-benign classification using diameter

of the lesion number of clusters max(i) = 3, number of

modalities max(j) = m = 3 and coordinates of clusters’

centroids ci are triplets {LesD1; LesD2; LesD3}i: {51.0; 40.7;

40.0}, {106.8; 85.3; 82.2}, {201.2; 148.0; 142.3}.

Variable
Values

Cluster 1 Cluster 2 Cluster 3

LesD1 51.0 106.8 201.2

LesD2 40.7 85.3 148.0

LesD3 40.0 82.2 142.3

LesD 1 2 3

lg(CA125) 1.11 1.83 3.01

lg(CA125) 1 2 3

B. Classification of ovarian tumours using SNuP

Please refer to [4] for a few examples of application of

the method to differential diagnosis of benign and malignant

forms of ovarian tumours.

After all input variables are measured in discrete scale the

elements of SNuP model are calculated. In comparison with

our previous paper [4], where only binary variables were used,

here we used the whole range of unique values of ordinal

and nominal variables. For every distinct value of a variable

(e.g. strong blood flow, col score = 4)there were calculated

the following parameters: conditional probability of this event

in malignant and benign groups P (xi|A1,2), diagnostic coeffi-

cient for the distinct value of the variable DC(xi,j) using (4),

J-divergence of the symptom’s level J(xi,j) using (9). Then

values of J-divergence were summarised across all values to

produce total estimate of informativity of the symptom J(xi)
as in (10). It is recommended to start SNuP from the most

informative variables, therefore all variables were sorted by

J(xi) value in descending order. As the format of the paper

does not allow to present DC and J for all symptoms, we

summarised the most informative variables in Table I where

total J is presented in the third column, all distinct values of

variables are given in the forth one, followed by corresponding

values of diagnostic coefficients. A large value of DC means a

high discriminative ability of the variable and the information

measures J gives an indication of how reliable this is. Features

with positive DC values correspond to malignancy, and those

with negative values to the benign group. Accumulation of the

diagnostic information was carried out by summation of the

diagnostic coefficients and comparing the sum with a specified

threshold.

In order to classify cases there are thresholds DCth(A1,2)
to be specified. We set β to 0.05 and varied α from 0.90

to 0.001. Lower and upper thresholds for sum of diagnostic

coefficients were calculated using (6) and (7). Performance

of the model during 3-fold cross-validation is presented in

Table II. Last column of the table shows median number of

cases where diagnostic decision was undefined. As can be seen

this number increases with decreasing the level of acceptable

error α. We chose α = 0.10 as an optimal threshold as it

produce relatively high performance (Se=86.9%, Sp=84.3%,

Acc=84.9%) and low number of undefined cases (10 out of

355).

Interpretation of diagnostic coefficients of untransformed

and univariately transformed variables is straightforward when

there is clear assignment of DC to the level of the symptom.

For instance, low blood flow (ColScore=1) is highly associated

with benign tumour, DC = −11.2, and strong blood flow

(ColScore=4) on the other hand is a marker of malignancy,

DC = 9.6. Example of univariately transformed variable, log

of serum CA125, was split into three clusters which can be

described as low, medium and high level with raising degree

of association with malignancy.

New variables created in two- or multidimensional space

might have increasing values in one dimension and decreas-

ing in another which slightly complicates interpretation and

requires more clinical input for that. There are examples of

these kind of variables: diameter of solid component (SolidD),

velocity indices (PI, RI, PSV, TAMXV), diameter of ovaries

(OvD) and diameter of lesion (LesD).
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TABLE I

THE MOST INFORMATIVE VARIABLES WITH J > 1.0

Rank Variable J Level of symptom Diagnostic coefficients

1 Locularity 5.37 {1 2 3 4 5 6} {−15.9; 2.4;−6.1; 3.8; 7.4; 4.7}
2 ColScore 3.91 {1 2 3 4} {−11.2;−3.6; 2.0; 9.6}
3 WallRegularity 2.76 {0 1} {−6.4; 4.2}
4 SolidD 2.68 {1 2} {−2.6; 9.9}
5 Ascites 2.64 {0 1} {−2.1; 11.9}
6 PI, RI, PSV, TAMXV 2.19 {1 2 3} {11.6; 5.2;−3.3}
7 RatioPapLes 2.05 {1 2 3} {6.5;−2.8; 7.5}
8 NrLocules 1.99 {0 1 2 3 4 5 6} {6.6;−4.0;−0.3;−2.9;−1.5; 1.8; 7.7}
9 Fluid 1.79 {1 2} {8.9;−1.9}

10 PapNr 1.78 {0 1 2 3 4} {−1.9;−0.7; 5.3; 2.7; 11.1}
11 PapFlow 1.68 {0 1} {−1.9; 8.1}
12 MaxSolid 1.63 {1 2 3} {−1.4; 9.1; 11.5}
13 age 1.35 {1 2 3} {−4.4; 4.8; 0.9}
14 OvD 1.3 {1 2 3} {−3.2; 6.3; 1.8}
15 PapSmooth 1.21 {0 1} {−1.7; 6.4}
16 MaxLes 1.19 {1 2 3} {−3.0; 6.1; 2.1}
17 lg(CA125) 1.11 {1 2 3} {0.7; 4.8; 13.6}
18 LesD 1.05 {1 2 3} {−2.8; 2.7; 5.3}

TABLE II

PERFORMANCE OF THE MODEL ON THE TEST DATA SET (β = 0.05)

α Acc, % Se, % Sp, % PPV, % NPV, % # undefined

0.90 68.7 91.7 61.2 44.4 95.5 0
0.80 69.1 90.2 62.2 45.0 94.9 0
0.70 68.4 90.5 61.0 44.6 94.9 0
0.60 68.5 91.3 61.0 44.8 95.2 0
0.50 73.4 87.9 68.5 50.4 94.3 0
0.40 76.7 87.5 73.2 53.9 94.4 0
0.30 79.4 87.4 76.8 56.5 94.8 3
0.20 81.4 86.5 79.7 59.2 94.7 6
0.10 84.9 86.9 84.3 65.3 95.2 10
0.05 86.5 86.6 86.4 67.7 95.3 13
0.01 90.3 86.2 91.6 76.6 95.5 32
0.001 92.8 84.5 95.2 84.3 95.5 50

IV. CONCLUSION AND FUTURE WORK

In the paper we have presented the sequential non-uniform

procedure for modelling the preoperative diagnosis of adnexal

masses collected during multicentre prospective clinical trial

by IOTA group. The method can be considered as an exten-

sion of Wald’s consecutive analysis where accumulation of

diagnostic information makes it possible to use a minimal

number of features in order to make a decision with any given

level of confidence. The advantages of the method include the

use of a minimal number of variables, permissibility of cases

with missing values, and interpretability of the model and

results. The model can also incorporate prior knowledge of the

distribution of the classes. From the end-user point of view (i.e.

clinician) SNuP produces a model which is understandable

and enables ranking of the input variables according to their

discriminative abilities.

In this paper we extend SNuP to enable it to handle

continuous variables without the need for manual specification

of thresholds. It was done by using k-means clustering for

automatic partitioning of the input space.

A subject of the future work will be on multiclass generali-

sation [9], [10] and less strict handling of continuous variables.
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