
  

Abstract – Perceived speech quality is the key metric for QoS 
for VoIP applications. The primary aims of the study reported in 
the paper are to carry out a fundamental investigation of the 
impact of packet loss and talkers on perceived speech quality 
using an objective method to provide the basis for developing an 
artificial neural network (ANN) model to predict speech quality 
for VoIP. The impact of packet loss (e.g. loss burstiness, loss 
patterns and packet size) and different talkers on speech quality 
was investigated for three modern codecs (G.729, G.723.1 and 
AMR) using the new ITU PESQ algorithm. Results show that 
packet loss burstiness, loss locations/patterns and the gender of 
talkers  have an  impact on perceived speech quality. Packet size 
has, in general, no obvious influence on perceived speech quality 
for the same network conditions, but the deviation in speech 
quality depends on packet size and codec.  Based on the 
investigation, we used talkspurt-based conditional and 
unconditional packet loss rates (instead of  network packet loss 
rates because they are perceptually more relevant), codec type 
and the gender of the talker (extracted from decoder) as inputs 
to an ANN model to predict speech quality directly from 
network parameters. Results show that high prediction accuracy 
was obtained from the ANN model (correlation coefficients for 
the test and validation datasets were 0.952 and 0.946 
respectively). This work should help to develop efficient, non-
intrusive QoS monitoring and control strategies for VoIP 
applications. 
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I. INTRODUCTION 

In real-time voice communication, perceived speech 
quality, expressed as a Mean Opinion Score (MOS), is the 
key metric for Quality of Service (QoS) as it provides a direct 
link to quality as perceived by the end user.  MOS values may 
be obtained by subjective listening tests [1] or by objective 
perceptual measurement methods, such as the new ITU 
algorithm, the Perceptual Evaluation of Speech Quality 
(PESQ) [2]. 

In voice over IP applications, statistical and artificial 
intelligence methods are being developed to predict speech 
quality directly from IP network parameters for QoS 
monitoring and control purposes [3][4][5][6]. The E-model as 
well as artificial neural networks (ANN) models have recently 
been used to predict speech quality from network parameters 
[4][5][6][7]. Unlike the E-model which is static, artificial 
neural networks models can adapt to the dynamic 
environment of IP networks, such as the Internet, because of 
its ability to learn. However, the success of ANN approach in 
voice over IP depends on the ability of the models to fully 
learn the non-linear relationships between IP networks 

impairments (e.g. packet loss and jitter) and the perceived 
speech quality. 

At present, both the E-model and ANN based methods rely 
on databases obtained by subjective tests. Unfortunately, 
subjective listening tests are costly and time-consuming and 
as a result the databases are limited and do not cover all the 
possible scenarios and network conditions. The impact of a 
variety of network parameters (e.g. loss rate, burstiness, loss 
pattern and packet size) on perceived speech quality remains 
unclear. Further, little attention has been paid to talker 
dependency and the development of current ANN models are 
based on a limited number of codecs. The assumptions about 
the behaviour of network losses do not reflect reality. For 
example, only the numbers of consecutively lost packets  (e.g. 
1 to 5) were used to represent different bursty losses.  

The aims of the study reported in this paper are three fold: 
(1). to undertake a fundamental investigation of the impact of 
packet loss (e.g. loss rate and loss pattern) on perceived 
speech quality using an objective measurement algorithm (the 
new ITU PESQ algorithm), (2) to investigate the impact of 
different talkers on perceived speech quality, and (3) to 
develop a robust ANN model that exploits perceptually 
relevant information for speech quality prediction. 

The remainder of the paper is organised as follows. In 
Section II, the experimental system used in the study is 
introduced. In Section III, a fundamental study of the impact 
of packet loss and different talkers on speech quality is 
presented.  The study provides a basis for the development of 
the ANN model for speech quality prediction which is 
presented in Section IV. Section V concludes the paper. 

II. SIMULATION SYSTEM 

A block diagram of the system that was used in the study is 
depicted in Figure 1.  It is a PC-based software system that 
allows the simulation of key processes in voice over IP. It 
enables the simulation of a variety of network conditions and 
objective measurement of the effects on perceived speech 
quality. The system includes a speech database, an 
encoder/decoder, a packet loss simulator, a speech quality 
measurement module, a parameter extraction and an ANN 
model. The speech database is taken from the TIMIT data set  
[15] and ITU dataset [2]. Speech files from different male and 
female talkers are chosen for talker dependency analysis and 
to generate a data base for ANN model development 

Three modern codecs were chosen for the study. These are 
G.729 CS-ACELP (8 Kbps)  [9], G.723.1 MP-MLQ/ACELP 
(5.3/6.3 Kbps) [10] and Adaptive Multi-Rate (AMR) codecs 
with eight modes (4.75 to 12.2 Kbps) [11].  
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Figure 1. System structure for speech quality analysis and prediction 
 

A 2-state Gilbert model was used to simulate packet loss 
(see Figure 2). The Gilbert model is well known to represent 
the packet loss behaviour of a real network, even after the late 
arrival loss due to jitter is taken into account (if a packet 
arrives too late, it will be discarded by jitter buffer) [8].  In 
the figure, State 0 is for a packet received (no loss) and State 
1 is for a packet dropped (loss). p is the probability that a 
packet will be dropped given that the previous packet was 
received. q is the probability that a packet will be dropped 
given that the previous packet was dropped. q is also referred 
to as the conditional loss probability (clp). The probability of 
being in State 1 is referred to as unconditional loss 
probability (ulp). The ulp provides a measure of the average 
packet loss rate. It is given by: 

 )1( qppulp −+=  

The conditional loss probability (clp) and unconditional 
loss probability (ulp) are used in the paper to characterise the 
loss behaviour of the network. 

Figure 2. Gilbert model  

In our system, the new ITU perceptual measurement 
algorithm, the Perceptual Evaluation of Speech Quality 
(PESQ), is used to measure the perceived speech quality 
under different network conditions and for different talkers. 
The PESQ compares the degraded speech with the reference 
speech and computes an objective MOS value in a 5-point 
scale. In the study, the MOS score obtained from the PESQ is 
referred to as the 'measured MOS' to differentiate it from the 
'predicted MOS' obtained from the ANN model. The 
Parameter Extraction module is used to extract salient 
information from the IP network and the decoder (including 
the codec type and network packet loss). In real VoIP 
applications, codec type and packet loss would be parsed 
from the RTP header. After processing, the information is fed 
to the ANN model to predict speech quality. 

To provide a basis for the development of a robust ANN 
model, a fundamental study of the impact of packet loss and 

gender on perceived speech quality was undertaken. This 
enabled us to determine the relevant parameters to be used as 
input to the neural networks model to predict speech quality. 
The study is based on three modern codecs described above.  

III. PERCEIVED SPEECH QUALITY ANALYSIS 

A. The impact of packet loss on perceived speech quality 

We first investigated how packet loss burstiness affects 
perceived speech quality. A fixed packet size was set for 
different codec. Different network ulp and clp were chosen 
and the corresponding MOS score was calculated. To account 
for a wide range of possible type of packet loss patterns and 
locations, 300 different initial seeds for random number 
generation were chosen for each pair of ulp and clp. The 
average MOS score and 90% Confidence Internal (CI) were 
calculated. The results for G.729 and G.723.1 (6.3 Kb/s 
mode) are shown in Figures 3 and 4. The length of the test 
speech sentence was about 12 seconds. The packet size for 
G.729 and G.723.1 was 2 and 1 frames/packet, respectively. 
No VAD was activated. 

From Figures 3 and 4, it can be seen that the clp has an 
obvious impact on the perceived speech quality even for the 
same average loss rate (ulp). When burst loss increases (clp 
increasing), the MOS score decreases and the variation of the 
MOS score (shown in CI) also increases. This is because 
losses may occur more concentrated with high burst losses 
and this results in large variation in the MOS scores due to 
the locations of the losses, whereas it may occur evenly in 
low burst loss cases which results in small deviations. There 
is only a small difference between the results for G.729 and 
G.723.1, when ulp is 10%, and clp is from 40% to 70%.  

 

Figure 3. MOS vs packet loss for G.729  
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Figure 4. MOS vs packet loss for G.723.1 

We then investigated how packet size affects perceived 
speech quality. A fixed clp (40%) was set and ulp was 
changed from 0% to 40% in 5% increment. The packet size 
was changed from 1 to 6 frames/packet. As before, 300 
different initial seeds were generated. The average and the 
standard deviation of MOS scores for G.729 are shown in 
Figure 5 (a) and (b). The standard deviations for the MOS 
scores for AMR (12.2 Kb/s mode) are shown in Figure 6.  

From Figure 5 (a), it can be seen that the packet size has in 
general no obvious influence on perceived speech quality for 
a given packet loss rate. Similar results were obtained for 
G.723.1 and AMR. However, the variation in speech quality 
for the same network loss rate depends on packet size and 
codec, as shown in Figures 5 (b) and 6.  

When packet loss rate is lower and packet size is larger, the 
higher values of the standard deviation of MOS score means 
larger variation in speech quality for the same network 
conditions. The variation in quality is the main obstacle in the 
prediction of speech quality directly from network 
parameters. When packet loss (e.g. ulp and clp) was 
calculated from the Gilbert model, the loss is perceptual 
irrelevant as some losses may occur during a silent period 
which is imperceptible [13]. As a solution, we proposed to 
calculate losses only during talkspurts.  

A network packet may include a speech talkspurt frame or 
a silence frame. The number of silence frames depends on 
whether VAD (Voice Activity Detection) is activated at the 
encoder side. If VAD is activated, silence frame only 
represents SID (Silence Insertion Description) frame. Here 
we combined the information from decoder’s VAD indicator 
and network packet loss, and calculated the ulp and clp 
according to Gilbert model only during the speech talkspurt. 
In this case, State 1 in Figure 2 represents loss during a 
talkspurt, and State 0 represents no loss or loss during a 
silence period. We use ulp(VAD)/clp(VAD)  to differentiate 
them from network ulp/clp. As the calculation of 
ulp(VAD)/clp(VAD) was based on speech frame, the loss 
pattern and  the factor of packet size have both been taken 
into account. The codec type, ulp(VAD) and clp(VAD) were 
identified as inputs for neural network analysis. 

 

 
Figure 5. (a) Average MOS and (b) Standard Deviation of MOS for G.729 

 
Figure 6. Standard Deviation of MOS for AMR 

B. The impact of talker on perceived speech quality 

This experiment was to investigate whether difference in 
talker (male or female) has an effect on perceived speech 
quality for the same network conditions. We first chose 6 
English speakers (3 male and 3 female) from the TIMIT [15] 
Data Set (dialects 1 and 2). Speech files from the same talker 
were grouped to form a longer file (about 10s). The activity 
factor [16] was about 0.82 for all files. 

We altered ulp from 0 to 30 % in 5% increment, set clp to 
10% and packet size to 2 for G.729 (no VAD). As before, 
300 different initial seeds were chosen. The average MOS 
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scores for the six talkers are shown in Figure 7. The speech 
file name starts with letter “f” for female and “m” for male.  
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Figure 7. MOS vs Loss Rate for English speakers 

 
We further tested another four speech files (2 male and 2 

female of Dutch speakers) from an ITU data base [2]. Each 
speech file was about 8s, with about 45% to 49% activity. 
The results for the four speech files are illustrated in Figure 8.    
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Figure 8. MOS vs Loss Rate for Dutch speakers 

From inspection Figures 7 and 8, it can be seen that the 
impact of different talkers on perceived speech quality 
appears to depend mainly on the gender of the talker (male or 
female), irrespective of language and accent. The quality for 
the female talker tends to be worse than that of the male talker 
for the same network impairments. This effect is more 
obvious when loss increases.  

The reason for talker dependency is due to the codec 
algorithm. As the G.729, G.723.1 and AMR are all CELP-
based codecs, the use of linear predictive model of speech 
production can lead to variations in codec performance with 
different talkers and languages [14]. In this paper, we focused 
on gender issue, and identified gender as one of the input 
parameters for neural network analysis. The gender can be 
decided according to pitch delay derived from the decoder.  

IV. PREDICTION OF PERCEIVED SPEECH QUALITY USING 
ARTIFICIAL NEURAL NETWORK (ANN) 

In order to model the relationships between network 
impairments and perceived speech quality, a neural network 

model was developed to learn the non-linear mapping from 
network parameters to MOS score. 

Four variables were identified as inputs to the neural 
network model, namely: codec type, gender, ulp(VAD) and 
clp(VAD). The predicted MOS score was the only output (see 
Figure 1). Stuttgart Neural Network Simulator (SNNS) 
package [12] was used for neural network training and 
testing. A three-layer feed-forward neural net architecture and 
the Standard Backpropagation learning algorithm were 
selected for simplicity.  

In order to train and test the neural network, a database was 
generated from 2 talkers (1 male and 1 female) and three 
codecs, G.729, G.723.1 (6.3Kb/s) and AMR (12.2 Kb/s). For 
dual–mode G.723.1 and eight-mode AMR, only one mode 
was chosen for simplicity. The network loss ulp was set to 0, 
10, 20, 30 and 40% and clp was set to 10, 50 and 90%. The 
packet size was set to 1, 2, 3, 4 and 5 frames/packet. For each 
case, an initial seed was chosen randomly to cater for a range 
of possible loss patterns. The state transitions were counted 
according to the Gilbert model (see Figure 2). In order to 
compare the results to real network loss and talkspurt-based 
network loss, the real loss rate at the end of the test sentence, 
ulp(Real)/clp(Real) and loss rate during talkspurt, 
ulp(VAD)/clp(VAD) were calculated at the same time. The 
difference between ulp(Real)/clp(Real) and ulp/clp is due to 
pseudo-random number generation and initial seeds selection. 
For each loss condition, the perceived speech quality between 
the reference and degraded speech files was calculated using 
PESQ. A total of 362 samples (patterns) were generated. 70% 
of the samples were chosen randomly as the training set and 
the remaining 30% as the testing set.  

Different network structures (e.g. the number of neurons in 
the hidden layer and the parameters of learning algorithm) 
were investigated to determine a suitable architecture for 
ANN model. Comparing the predicted MOS score from the 
ANN model and the measured MOS, we obtained a maximum 
Correlation Coefficient (ρ) of 0.967 and an average error of 
0.12 for the training set. For the testing set, ρ was 0.952 and 
the average error was 0.15. The learning rate (η) was 0.4 and 
the maximum difference (dmax) was 0.01 for a 4-5-1 net. The 
scatter diagrams of the predicted versus the measured MOS 
scores for the training and test data sets are illustrated in 
Figure 9 (a) and (b). Increasing the number of neurons in the 
hidden layer did not improve the prediction accuracy. 
However, when ulp(Real)/clp(Real) was used instead of 
ulp(VAD)/clp(VAD), the Correlation Coefficients for the 
training and testing datasets both dropped by 2-3 percent. 
This suggested that ulp(VAD)/clp(VAD) are better for speech 
quality prediction than ulp(Real)/clp(Real). We also 
investigated the effect of including packet size as an input to 
the neural net (i.e. 5 inputs) and obtained similar results. This 
suggested that packet size may not be necessary as an input to 
the neural network. 



  

As the training and test data sets were from the same 
talkers, we further generated a validation data set from 
another male and female talkers and set the different network 
loss conditions (ulp: 5, 15, 25, 35%, and clp: 30, 70%).  A 
total of 210 new patterns were generated and used to validate 
the trained ANN model. We obtained ρ of 0.946 and an 
average error of 0.19. This suggested that the neural network 
model works well for speech quality prediction in general. 

       (a)                                                           (b) 
Figure 9.  Predicted MOS vs. Measured MOS for 

 (a) training data and (b) test data  

The correlation coefficients obtained from training, test and 
validation datasets are between 0.946 to 0.967. It seems 
difficult to improve the performance further from neural 
network side. We think this is mainly due to the following 
two reasons. (1). ulp(VAD)/clp(VAD) is still not accurate 
enough to express perceptually relevant loss information for 
some loss patterns/locations; (2). Objective MOS scores from 
PESQ may not be as accurate as subjective MOS scores for 
some loss conditions. Our subjective test results have also 
confirmed that PESQ shows higher sensitivity than human 
subjects in high bursty conditions, especially in the case of 
missing words, whereas, it shows lower sensitivity than 
human subjects in lower bursty cases for G.729.  

V. CONCLUSIONS  

We have investigated the impact of packet loss, codec and 
talker on perceived speech quality based on the new ITU 
PESQ measurement algorithm and developed an ANN model 
for speech quality prediction. Results show that the loss 
pattern, loss burstiness and the gender of the talker have an 
impact on perceived speech quality. Packet size has in general 
no obvious influence on perceived speech quality for a given 
packet loss rate, but the deviation in speech quality depends 
on packet size and codec. The quality for the female talker 
tends to be worse than that of the male talker for the same 
network impairments. Based on the investigation, we used 
talkspurt-based conditional and unconditional packet loss 
rates (instead of the network packet loss rates because they 
are perceptually more relevant), codec type and the gender of 
the talker (extracted from decoder) as inputs to an ANN 
model to predict speech quality directly from the network 
parameters. Results show that high prediction accuracy was 
obtained from the ANN model (correlation coefficients of the 

test and validation datasets are 0.952 and 0.946 respectively). 
This work should help to develop  efficient, non-intrusive 
QoS monitoring and control strategies for VoIP applications. 

Future work will focus on further analysis of the loss 
pattern in order to incorporate more information from speech 
content (e.g. signal energy, voiced/unvoiced information) and 
to obtain more accurate perceptually relevant loss 
information. The neural networks based model will be 
optimised using real Internet VoIP trace data. More speech 
data will be investigated for the analysis of talker 
dependency.  
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