
MEDICAL SIGNAL PROCESSING 

Prospects for routine detection of dementia using the 
fractal dimension of the human electroencephalogram 

G.T.Henderson, E.C.Ifeachor, H.S.K.Wimalaratna, E.M.Allen and N.R.Hudson 

Abstract: The paper details research which aims to improve the contribution made by 
electroencephalogram (EEG) analysis to the diagnosis and care of patients with brain disease; 
dementia in particular. Previous attempts to automate EEG analysis have concentrated on separating 
patient groups from control groups, often on the basis of a single neurophysiological index derived 
from a short, isolated segment of EEG. The authors seek to develop, and test, a novel technique for 
the analysis of changes in serial EEG recordings on individuals (subject-specific analysis) which may 
serve as a basis for routine early detection of dementia. The objectives of the reported study were to 
examine the feasibility of applying appropriate fractal dimension (FD) (complexity) measures to the 
human EEG, and to examine whether methods using the subject specific variability of these measures 
are likely to be useful for detecting patients who develop dementia. The reason for undertaking the 
study was to establish a ‘proof of concept’ and determine whether research should concentrate in this 
area. Existing EEG analysis methods were reviewed and four FD measures suitable for EEG analysis 
were developed. These four measures were applied to a total of 21 EEG recordings (from seven 
subjects with various dementias, eight age matched controls and two young subjects who gave three 
recordings each). The results were analysed and the following conclusions were drawn: it is possible to 
measure the complexity of the human EEG using the FD, and the subject specific variability of the 
FD is an important candidate method for identifying patients with dementia. Therefore, further work 
in this area is justified. 

1 Early diagnosis of dementia 

Advances in nutrition, living conditions and healthcare in 
the developed world have led to an improved life expect- 
ancy [l]. Unfortunately, this brings with it an increase in 
the number of people who will develop Alzheimer’s disease 
and other dementias because the number of people in the 
high risk age groups is now increasing [2]. To offset this, 
efforts are being made to develop treatments such as the 
Acetylcholinesterase inhibitors (Tacrine, Donepezil and 
Exelon), which are claimed to slow the progress of the dis- 
eases [3]. However, unless a sufferer is diagnosed in the 
early stages, the treatments cannot give the maximum ben- 
efit [4]. 

Current techniques such as positron emission tomogra- 
phy (PET), that are used to diagnose and assess neurologi- 
cal disorders, require specialist equipment, and expert 
clinicians to interpret results. Such techniques, which are 
valuable in the diagnosis of dementia, or assess the nature 
of a neurological disorder, are inappropriate as a method 
of detecting individual subjects with early dementia within 
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the large at-risk population, because everyone within the 
at-risk group would need to be tested regularly and this 
would carry a high cost. Therefore, it is desirable to 
develop a low cost method of assessment which can be car- 
ried out quickly by a nonspecialist clinician. 

To assess the required sensitivity and specificity of the 
new system it is necessary to look at the effects of misdiag- 
nosis. Low sensitivity leading to large false negative diagno- 
sis would be undesirable, but would not make the situation 
any worse than at present. Low specificity leading to false 
positive diagnoses would be undesirable because of the dis- 
tress caused to patients and relatives and, perhaps, unneces- 
sary use of expensive drugs. 

Potentially, analysis of the electrical activity of the brain 
(the electroencephalogram or EEG), could provide the 
basis of an acceptable and affordable method for early 
detection of dementia [5]. The EEG has long been used for 
the diagnosis of neurological disorders but always had the 
disadvantage of subjectivity on reporting. If it were possible 
to automate the process of interpretation this would add 
objectivity and provide the desired first line of screening. 

It is well known that disorders of the brain are accompa- 
nied by changes in the EEG. The difficulty is that such 
changes in the EEG may be nonspecific. The challenge is to 
automate EEG analysis such that early EEG changes in 
dementia can be detected before the development of clini- 
cally significant mental decline. The ultimate aim should be 
that a system based on such an approach may be used by a 
GP during routine health checks of older patients, e.g. for 
driving licence renewal. 

The purpose of this paper is to report our initial study to 
demonstrate that subject specific variability of the FD of 
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the human EEG is an important candidate method for the 
early detection of dementia [6]. 

2 Subject specific EEG analysis 

A great deal of effort has been expended in the pursuit of 
automated EEG analysis, but there are few successful auto- 
mated methods that are widely and routinely used in clini- 
cal practice. A notable exception is perhaps bispectral 
analysis in anaesthesia [7]. We believe that one reason why 
automatic EEG analysis has not brought more success is 
that research has concentrated on group comparisons, i.e. 
attempting to separate individuals into normal and diseased 
groups (Alzheimer’s, Parkinson’s, etc.), using indexes 
derived from isolated (snapshot) EEGs. An alternative is 
subject-specific analysis: comparing serial EEGs from the 
same subject and looking for trends in indexes developing 
over time, rather than comparing an EEG to that which is 
regarded as normal within the population. 

When an EEG is analysed, one may extract indexes such 
as the alpha wave magnitude, FD and bispectrum index. 
Each of these indexes is subject to short-, medium- and 
long-term variability. For subject-specific analysis, we 
require a distinguishable change that implies the onset of 
disease, and a continuing change that gives a measure of 
disease progression or effect of treatment. 

As an illustration, Fig. 1 shows changes in a hypothetical 
index from a subject who is initially normal and then enters 
a notable decline at the onset of disease. The index only 
becomes ‘abnormal’ some time after the onset of the dis- 
ease, when it falls outside the normal spread. This illus- 
trates why a subject-specific method that compares an 
EEG to those taken previously from the same subject has 
the potential to provide earlier detection of a disease than a 
method that compares an EEG to what is generally normal 
within the population. 

t 
index 

time 
Fig. 1 Conceptual index progression with t k  

3 EEG complexity 

As the brain is constructed of synapses and neurones which 
have nonlinear behaviours, it has been suggested that the 
brain could, in a mathematical sense, be chaotic. A tutorial 
review of nonlinear dynamical analysis of EEGs is given in 
PI. 

Research in EEG dimensional complexity has evolved 
from an early work which suggests that the human EEG, 
under some conditions, may represent deterministic chaos 
of relatively low dimension [SI, through studies measuring 
the dimension of the strange attractor [lo], through to a 
recent work that has questioned whether the EEG repre- 
sents a chaotic signal [I 11. It was reported that surrogate- 
data testing suggests normal EEG is high-dimensional, and 
does not represent low-dimensional chaos. 

There is an alternative to dimensional complexity meas- 
ures which rely strongly on the assumption that low dimen- 
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sional chaos is present. The alternative is the FD, which 
may be used as a practical measure of signal complexity 
even if chaos is not present. This study demonstrates that 
the FD may provide useful results, although it is accepted 
that the theoretical framework is somewhat weakened. 

4 Fractal dimension of the EEG 

4.1 Introduction to fractals 
The FD index was used and developed in this paper as a 
vehicle to explore subject specificity. The reason for choos- 
ing the FD was that it had been reported to be successful in 
group comparison trials [12, 131. To introduce fractals, it is 
convenient to begin with an example that was conceived by 
Helge von Koch [14]. The so called Koch curve may be 
constructed by taking an equilateral triangle and then on 
each side add another equilateral triangle to cover the mid- 
dle third of the line. T h ~ s  is then repeated with smaller and 
smaller triangles (see Fig. 2). 

A+*+*+* 
Fig.2 Development of the Koch m e  

The Koch curve reveals an interesting paradox: each 
time new triangles are added the total length of the outline 
becomes larger by a factor of 4/3. Therefore the total length 
of the outline tends to infinity, even though the area of the 
curve remains less than the area of a circle drawn around 
the original triangle, and is therefore fi6Ze. A mathematical 
framework was invented to describe shapes such as the 
Koch curve. In this framework these shapes are assigned a 
non-integer or fractal dimension (which for the Koch curve 
is approximately 1.26). Interestingly, one magmfkation of 
the Koch curve shows the same structure as any other 
magnification of the Koch curve. This is self-similarity, 
which all fractals exhlbit. 

4.2 Definition of dimension 
In common parlance, the number of dimensions that an 
object exists within is equal to the number of numbers that 
would be necessary to describe any point within the object. 
So, for example a line exists in one-dimensional space 
because one number is needed to uniquely identify a point 
on the line, and a square exists in two-dimensional space 
because two numbers are needed to describe any point 
within the square. The generally accepted, mathematically 
rigorous, inductive definition is: 
‘If the boundaries of arbitrarily small neighbourhoods of all 
points in a space are (n - 1)-dimensional, then the space is 
n-dimensional. The empty set, and only the empty set, has 
a dimension of -1’. 
This definition is accurate but difficult to understand. Tak- 
ing a square as an example, any point within the square has 
a boundary that is a closed (circular) line. Therefore, a 
square has one more dimension than a line. Furthermore, 
any point on the line has a boundary that comprises two 
points and similarly the boundary to the points is the 
empty set. Thus, worlung back to the square; the empty set 
has a dimension of -1, the set of points has a dimension of 
0, the line has a dimension of 1 and the square has a 
dimension of 2. 

The above definition of the dimension of a space always 
gives an integer. This is the topological dimension D, It 
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will be seen that a fractal set is characterised by a number 
of dimensions which is greater than the topological dimen- 
sion and that this dimension need not be integer. To under- 
stand the non-integer dimension it is convenient to consider 
the Koch curve, where a single number is not suficient to 
describe a point on the outline because the length is infinite 
and two numbers would be too much because the outline 
does not have an area: thus the number of dimensions 
needed to describe it is between 1 and 2 (in fact the dimen- 
sion is -1.26). 

Returning to a more rigorous argument, consider a 
smooth curve of length L which has a topological dimen- 
sion D, of 1. The length of the curve may be estimated by 
covering it with N small line segments of length 6, where N 
would be a function of 6. Now L would be given by: 

L = lim(N(6)h) 
6+0 

Similarly, consider a shape with a topological dimension of 
2, such as a circle or square, where the area may be esti- 
mated by covering it with small squares of side 6: 

A = lim (N(S )S2)  
6+0 

Thus, the measured quantity (length, area etc.) may be 
found by covering the shape with small objects which have 
the same topological dimension. If these objects are cov- 
ered by small objects of an inappropriate dimension then 
the result is either zero or infinite. For example, if we use 
vanishngly small squares to cover a smooth curve, then in 
the limit the ‘area’ will be zero. Also, if we cover a circle 
with small line segments, then in the limit the ‘length’ will 
be infinite. We may write a generalised expression for the 
measured quantity Md: 

( 0 0  d < D  
ibfd = Iim (~(6)s~) = ibfda d = D (3) 

( 0  d > D  6+0 

The value of Mdo is not important in this context, but the 
Hausdorff-Besicovitch dimension D is of great significance 
[15]. For a fractal set, this dimension (the FD) obeys the 
inequality D, < D I D, + 1 and is not normally an integer. 
For the Koch curve the apparent length of the outline con- 
tinues to increase indefinitely as the step-size decreases in 
accordance with the rule set out in eqn. 3.  

4.3 Measuring the fractal dimension 
A coastline is an example of a natural approximation to a 
fractal; if one steps around a land-sea boundary using N 
steps of length 6, then N would be found to be a function 
of the step length, approximately given by: 

L(6) = ”6) = L O P 1  (4) 
Here L is the apparent length of the coast, Lo is a constant 
and D is the FD. Using a range of values for 6, and meas- 
uring the corresponding values for length L(6) it is possible 
to use a least squares (or similar) method to estimate D; 
e.g. for Norway the FD D - 1.5. This technique of using 
line segments to cover a fractal with a topological dimen- 
sion of 1 is known as the divider dimension (DD). 

An alternative to the DD is to cover the coastline with 
squares; this is the box dimension where the total area A is 
found to be related to the length of the squares side 6 by: 

A(6) = 6’N(6) = AoSD-2 ( 5 )  
Using a range of values for 6, and measuring the corre- 
sponding values for area A(6), it is possible to use a least 
squares (or similar) method to estimate D. 
IEE Proc.-Sei. Meas. Technol.. Vol. 147, No. 6, November 2000 

The FD applied to the EEG is a good candidate to be an 
indicator of possible dementia because it is a measure of 
signal complexity, and it has been shown that the complex- 
ity of the EEG is less in demented subjects [12]. 

4.4 Fractal dimension in affine space 
There is a complication when one considers computing the 
FD of the EEG which exists in an affine space. In an affine 
space the axes have incompatible units, and there is no nat- 
ural scaling between them (distance along the time axis 
cannot be compared with distance along the voltage axis) 
and as such 6 and computed D may not be meaningful 

In an early study [12], the DD of the EEG was used to 
separate subjects with Alzheimer’s Disease from a group of 
normal subjects. When this method was repeated on a 
single Alzheimer’s subject and a single normal subject it 
was found that the arbitrary voltagehime scaling affected 
the results; a scaling of 0.6 nV/s for example, gave FDs 
similar to those reported (1.66 for a normal subject and 
1.28 for an Alzheimer’s subject); but a hlgher scaling of 
2.5nV/s gave very different results, where the normal 
subject had a lower FD (1.21) than the Alzheimer’s subject 
(1.61). This problem is a direct consequence of applying the 
divider dimension to an EEG, which exists in an affine 
space. 

A number of methods have been reported in the litera- 
ture which are suitable for estimating the FD of shapes in 
an affine space [17]. The adapted box dimension and the 
dimension of the zero-set were chosen for this study. The 
adapted box dimension was chosen because it is similar to 
the box dimension often used in non-affine space, and the 
dimension of the zero-set was used because it is computa- 
tionally efficient. 

To compute the adapted box dimension we divide the 
record of duration T into slices of length At, and note the 
difference between the maximum and minimum during 
each slice (the extent). The mean extent &(At) is computed 
for a range of At, and the dimension is computed by find- 
ing a best fit to the equation: 

A(&) = TE(At) = AoAt2-D (6) 
To compute the dimension of the zero-set we form the set 
of instances when the record intersects with a suitable 
straight line (we have used the line formed by linear regres- 
sion). The topological dimension of this set is zero. The FD 
of this zero-set is computed by covering it with N line seg- 
ments of length At, and finding the best fit to the equation: 

L(At)  = A“&) = LoAt1-D (7) 

4.5 Combining estimates of fractal dimension 
In this analysis the raw EEG data are divided into 1s seg- 
ments, and the estimated FD from each segment through 
the entire duration of the recording and across all 21 chan- 
nels was plotted on a histogram. Then, the highest point on 
the histogram (the mode) was taken as the composite meas- 
ure of fractal dimension for that recording. Ths  use of a 
histogram is intended to reduce the effects of artefacts and 
unusual activity on the final result. However, it is conceiva- 
ble that artefacts of long duration may have an effect and 
this wdl be addressed in future work. 

The choice of segment length can have a detrimental 
effect on the results. However, the results obtained are 
almost invariant for segment lengths between 0.5 and 2s. 
Below 0.5s the results become erratic because of the 
number of samples becoming too small compared to the 
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sampling rate employed, 256Hz. With segment lengths 
greater than 2s the results are affected by the nonstationary 
nature of the EEG [5]. Thus, 1s is seen to be a reasonable 
choice for segment length. 

The adapted box and zero-set dimension of the EEG 
were estimated in this way. A further two measures were 
produced by applying adapted box and zero-set dimension 
estimating techniques to the auto-correlation of the data; 
that is replacing the data segments with the discrete time 
analogue of the auto-correlation function: 

(s+l).At 

Rs(t)  = 1 x ( T ) x ( T + ~ ) ~ T  0 5 t < At (8) 
s.At 

where s is the segment number and At is the segment dura- 
tion (1 s). 

5 Data 

Data for ths  study were obtained using the traditional 
10-20 system in conjunction with a strict protocol [18]. The 
common average montage (using the average of all chan- 
nels as the reference) was used in all recordings, and the 
sampling rate was 256Hz. 

EEGs were collected from seven patients (three Alzheim- 
er’s patients, three mixed type (Alzheimer’s and multi- 
infarct dementia) patients and one multi-infarct dementia 
patient), eight age-matched controls (over 65 years of age), 
one young male and one young female. All of the age 
matched controls and the two young volunteers had 
normal EEGs (confirmed by a Consultant Clinical Neuro- 
physiologist). One age-matched control (known as ‘voll’) 
has subsequently developed Alzheimer’s disease; this record 
is of particular interest because it is potentially of a subject 
early in transition from ‘normal’ to Alzheimer’s diseased. 
The young male (denoted by ‘X’) and the young female 
(denoted by ‘Y’) had their EEG recorded three times at 
intervals between 7 and 14 days. These recordings give an 
indication of the variability of a single subject’s FD, which 
may be compared with the variability between members of 
the set of normals. 

The EEG recordings encompass various states: awake, 
hyperventilation, drowsy and alert with periods of eyes 
closed and open. The analysis described in this paper takes 
the whole recording including artefacts and has no a priori 
selection of elements ‘suitable for analysis’. This approach 
leads to a prediction of the usefulness of the techniques as 
they would most conveniently be used in practice. 

6 Results 

It was found that the variation in FD over areas of the 
head was too irregular to give significant results, but there 
is an indication that the front of the head tends to have 
lower but more variable FD than the rear of the head. The 
authors suspect that this is because the effects of artefacts 
are more pronounced, and the abundance of slow waves is 
greater, at the front of the head. It may be necessary to 
investigate these variations over the scalp in future work. 
The data presented below are the FD aggregated from all 
channels over the scalp. 

Table 1 shows the results from three recordings of each 
of the two young subjects (subjects X and Y). The vana- 
tion from recording to recording of the same subject is the 
short term variability of the FD. The estimated population 
standard deviation (SD) for a single subject for each meas- 
ure is given in Table 2. 
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Table 1: Comparison of fractal dimension from two young 
subjects (three readings from each) 

Raw EEG Auto-correlation of EEG 

Adapted box Zero-set Adapted box Zero-set 
Record 

X I  1.564 0.563 1.350 0.536 

x 2  1.574 0.608 1.385 0.559 

x 3  1.559 0.564 1.223 0.555 

Y1 1.521 0.577 1.273 0.411 

Y2 1.519 0.561 1.284 0.425 

Y3 1.513 0.558 1.269 0.423 

Table 2: Variability of fractal dimension measures from two 
young subjects 

Raw EEG Auto-correlation of EEG 

Adapted box Zero-set Adapted box Zero-set 
~~ ~ 

SD 0.006 0.020 0.060 0.010 

Table 3 shows the results for the age-matched controls, 
and the mean result for each of the young normals. It may 
be seen that for all the measures, except the zero-set dimen- 
sion of raw data, the SD of the results from the group of 
normals is larger than the variation for a single subject 
(Table 2). 

Table 3: Fractal dimension measures from controls and 
young normals 

Raw EEG Auto-correlation of EEG 

Adapted box Zero-set Adapted box Zero-set 
Record 

vo12 1.596 0.562 1.434 0.590 

vo13 1.572 0.560 1.452 0.648 

vo14 1.551 0.561 1.496 0.662 

vo15 1.592 0.562 1.587 0.562 

vol6 1.591 0.561 1.638 0.627 

vo17 1.538 0.564 1.391 0.539 

vo18 1.596 0.616 1.500 0.670 

X 1.566 0.578 1.319 0.550 

Y 1.518 0.559 1.275 0.420 

Mean 1.569 0.569 1.475 0.585 

SD 0.028 0.018 0.117 0.079 

Table 4 Fractal dimension measures from demented sub- 
jects 

Raw EEG Auto-correlation of EEG 

Adapted box Zero-set Adapted box Zero-set 
Record 

AD1 1.560 0.565 1.134 0.323 

AD2 1.520 0.560 1.181 0.368 

AD3 1.512 0.554 1.183 0.331 

MIDI 1.483 0.496 1.219 0.384 

MIX1 1.533 0.562 1.148 0.324 

MIX2 1.442 0.497 1.118 0.270 

MIX3 1.608 0.669 1.265 0.438 

The results for the demented subjects are shown in 
Table 4. The results show that the adapted box dimension 
and zero-set dimension of the auto-correlation function are 
generally lower than normal when dementia is present. For 
these data there is no overlap in the adapted box dimension 
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of the auto-correlation function for normal subjects and for 
demented subjects (100Y0 specificity). However, the separa- 
tion between the two groups of subjects is small, and there 
would undoubtedly be an overlap if more recordings were 
taken. 

Finally we consider the results from the age-matched 
control 'voll' who was at the time of recording confirmed 
by a clinician to be 'normal', but went on to develop Alzhe- 
imer's disease. The results from 'voll' show that the 
adapted box dimension of the auto-correlation function 
and the dimension of the zero-set for the auto-correlation 
function are suspiciously low, but not outside the range for 
normal subjects. Unfortunately, in the absence of record- 
ings before or after this recording it is not possible to say 
whether subject specific analysis would have detected the 
onset of this dementia. 

A highest normal 
0.67 

highest demented 

lowest normal 
0.42 

lowest demented 
0.27 

Table 5: Fractal dimension measures from subject prior to 
dementia 

Raw EEG Auto-correlation of EEG 

Adapted box Zero-set Adapted box Zero-set 
Record 

voll 1.547 0.564 1.325 0.516 

The results in Tables 1-5 are reproduced graphically in 
Figs. 3-6. 
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7 Sensitivity and specificity 

The results described so far are reasonably good with some 
separation of demented from normal subjects, however it is 
possible to achieve more by using the subject-specific 
concept. Consider the zero-set dimension of the auto- 
correlation function for which the results from specific 
subjects vary over a number of weeks by only 0.01 (SD) 
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and the range of results from normal subjects (0.42 to 0.67, 
from Table 3)  overlaps with the range from demented 
subjects (0.27 to 0.44, from Table 4). These results are 
summarised in Fig. 7. If we were to compare the FD from 
a subject to one taken from the same subject some time 
earlier, then we would be able to detect a subtle decrease 
and possibly the onset of dementia. Clearly this is only 
indicative, and further work will be required to demon- 
strate that there is a measurable rate of decline in the early 
stages of dementia, that the stability of FD among normal 
subjects exists over longer periods and this stability is 
common among a substantial proportion of normal 
subjects. 

8 Conclusions and future work 

The results in this paper show that two of the FD measures 
(the adapted box dimension of the auto-correlation func- 
tion, and the dimension of the zero-set for the auto-correla- 
tion function) are good candidates for use in subject- 
specific detection of dementia. This is because the measured 
FD of the EEG is generally lower for a demented subject 
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than for normal subjects, and the variability of a single nor- 
mal subject’s FD is small in comparison to the variability 
between members of the set of normals. 

Having met the objectives of this study by measuring the 
complexity of the human EEG using the FD, and by dem- 
onstrating that the subject-specific variability of the FD is 
an important candidate method for the routine detection of 
dementia, we may conclude that further work in this area is 
justified. 

The research will continue with more data being ana- 
lysed to provide statistical significance (including serial 
recordings from Alzheimer’s subjects who are in decline) 
and with indexes other than FD, such as bicoherence, being 
tested. 

Further work will also be required to assess whether the 
use of a histogram to eliminate the effects of artefacts is 
adequate, because artefacts of long duration may continue 
to have an effect. 
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